These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 27362297)

  • 1. Mg deficiency affects leaf Mg remobilization and the proteome in Brassica napus.
    Billard V; Maillard A; Coquet L; Jouenne T; Cruz F; Garcia-Mina JM; Yvin JC; Ourry A; Etienne P
    Plant Physiol Biochem; 2016 Oct; 107():337-343. PubMed ID: 27362297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zn deficiency in Brassica napus induces Mo and Mn accumulation associated with chloroplast proteins variation without Zn remobilization.
    Billard V; Maillard A; Garnica M; Cruz F; Garcia-Mina JM; Yvin JC; Ourry A; Etienne P
    Plant Physiol Biochem; 2015 Jan; 86():66-71. PubMed ID: 25438138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of senescence-associated protease activities involved in the efficient protein remobilization during leaf senescence of winter oilseed rape.
    Poret M; Chandrasekar B; van der Hoorn RAL; Avice JC
    Plant Sci; 2016 May; 246():139-153. PubMed ID: 26993244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic analysis of residual proteins in blades and petioles of fallen leaves of Brassica napus.
    Desclos-Théveniau M; Coquet L; Jouenne T; Etienne P
    Plant Biol (Stuttg); 2015 Mar; 17(2):408-18. PubMed ID: 25294336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iTRAQ-based quantitative proteomics analysis of Brassica napus leaves reveals pathways associated with chlorophyll deficiency.
    Chu P; Yan GX; Yang Q; Zhai LN; Zhang C; Zhang FQ; Guan RZ
    J Proteomics; 2015 Jan; 113():244-59. PubMed ID: 25317966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A proteomic profiling approach to reveal a novel role of Brassica napus drought 22 kD/water-soluble chlorophyll-binding protein in young leaves during nitrogen remobilization induced by stressful conditions.
    Desclos M; Dubousset L; Etienne P; Le Caherec F; Satoh H; Bonnefoy J; Ourry A; Avice JC
    Plant Physiol; 2008 Aug; 147(4):1830-44. PubMed ID: 18552235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper-deficiency in Brassica napus induces copper remobilization, molybdenum accumulation and modification of the expression of chloroplastic proteins.
    Billard V; Ourry A; Maillard A; Garnica M; Coquet L; Jouenne T; Cruz F; Garcia-Mina JM; Yvin JC; Etienne P
    PLoS One; 2014; 9(10):e109889. PubMed ID: 25333918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The expression patterns of SAG12/Cab genes reveal the spatial and temporal progression of leaf senescence in Brassica napus L. with sensitivity to the environment.
    Gombert J; Etienne P; Ourry A; Le Dily F
    J Exp Bot; 2006; 57(9):1949-56. PubMed ID: 16720615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: effects of methyl jasmonate on nitrate uptake, senescence, growth, and VSP accumulation.
    Rossato L; MacDuff JH; Laine P; Le Deunff E; Ourry A
    J Exp Bot; 2002 May; 53(371):1131-41. PubMed ID: 11971924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic analysis of chromium stress and sulfur deficiency responses in leaves of two canola (Brassica napus L.) cultivars differing in Cr(VI) tolerance.
    Yıldız M; Terzi H
    Ecotoxicol Environ Saf; 2016 Feb; 124():255-266. PubMed ID: 26546907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of mineral sulphur availability on nitrogen and sulphur uptake and remobilization during the vegetative growth of Brassica napus L.
    Abdallah M; Dubousset L; Meuriot F; Etienne P; Avice JC; Ourry A
    J Exp Bot; 2010 Jun; 61(10):2635-46. PubMed ID: 20403880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteome Dynamics and Physiological Responses to Short-Term Salt Stress in Brassica napus Leaves.
    Jia H; Shao M; He Y; Guan R; Chu P; Jiang H
    PLoS One; 2015; 10(12):e0144808. PubMed ID: 26691228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leaf senescence and nitrogen remobilization efficiency in oilseed rape (Brassica napus L.).
    Avice JC; Etienne P
    J Exp Bot; 2014 Jul; 65(14):3813-24. PubMed ID: 24790115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of nutrient remobilization through structural changes of palisade and spongy parenchyma in oilseed rape leaves during senescence.
    Sorin C; Musse M; Mariette F; Bouchereau A; Leport L
    Planta; 2015 Feb; 241(2):333-46. PubMed ID: 25281330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The contrasting N management of two oilseed rape genotypes reveals the mechanisms of proteolysis associated with leaf N remobilization and the respective contributions of leaves and stems to N storage and remobilization during seed filling.
    Girondé A; Etienne P; Trouverie J; Bouchereau A; Le Cahérec F; Leport L; Orsel M; Niogret MF; Nesi N; Carole D; Soulay F; Masclaux-Daubresse C; Avice JC
    BMC Plant Biol; 2015 Feb; 15():59. PubMed ID: 25848818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolomics of laminae and midvein during leaf senescence and source-sink metabolite management in Brassica napus L. leaves.
    Clément G; Moison M; Soulay F; Reisdorf-Cren M; Masclaux-Daubresse C
    J Exp Bot; 2018 Feb; 69(4):891-903. PubMed ID: 28992054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A combined 15N tracing/proteomics study in Brassica napus reveals the chronology of proteomics events associated with N remobilisation during leaf senescence induced by nitrate limitation or starvation.
    Desclos M; Etienne P; Coquet L; Jouenne T; Bonnefoy J; Segura R; Reze S; Ourry A; Avice JC
    Proteomics; 2009 Jul; 9(13):3580-608. PubMed ID: 19609964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transcription factor BnaA9.WRKY47 coordinates leaf senescence and nitrogen remobilization in Brassica napus.
    Cui R; Feng Y; Yao J; Shi L; Wang S; Xu F
    J Exp Bot; 2023 Sep; 74(18):5606-5619. PubMed ID: 37474125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A profiling approach of the natural variability of foliar N remobilization at the rosette stage gives clues to understand the limiting processes involved in the low N use efficiency of winter oilseed rape.
    Girondé A; Poret M; Etienne P; Trouverie J; Bouchereau A; Le Cahérec F; Leport L; Orsel M; Niogret MF; Deleu C; Avice JC
    J Exp Bot; 2015 May; 66(9):2461-73. PubMed ID: 25792758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defence reactions in the apoplastic proteome of oilseed rape (Brassica napus var. napus) attenuate Verticillium longisporum growth but not disease symptoms.
    Floerl S; Druebert C; Majcherczyk A; Karlovsky P; Kües U; Polle A
    BMC Plant Biol; 2008 Dec; 8():129. PubMed ID: 19094241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.