These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 27362299)

  • 21. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi.
    Jiang Y; Wang W; Xie Q; Liu N; Liu L; Wang D; Zhang X; Yang C; Chen X; Tang D; Wang E
    Science; 2017 Jun; 356(6343):1172-1175. PubMed ID: 28596307
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptome analysis of the Populus trichocarpa-Rhizophagus irregularis Mycorrhizal Symbiosis: Regulation of Plant and Fungal Transportomes under Nitrogen Starvation.
    Calabrese S; Kohler A; Niehl A; Veneault-Fourrey C; Boller T; Courty PE
    Plant Cell Physiol; 2017 Jun; 58(6):1003-1017. PubMed ID: 28387868
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The genome of Rhizophagus clarus HR1 reveals a common genetic basis for auxotrophy among arbuscular mycorrhizal fungi.
    Kobayashi Y; Maeda T; Yamaguchi K; Kameoka H; Tanaka S; Ezawa T; Shigenobu S; Kawaguchi M
    BMC Genomics; 2018 Jun; 19(1):465. PubMed ID: 29914365
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptome responses in wheat roots to colonization by the arbuscular mycorrhizal fungus Rhizophagus irregularis.
    Li M; Wang R; Tian H; Gao Y
    Mycorrhiza; 2018 Nov; 28(8):747-759. PubMed ID: 30251133
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A lysin motif effector subverts chitin-triggered immunity to facilitate arbuscular mycorrhizal symbiosis.
    Zeng T; Rodriguez-Moreno L; Mansurkhodzaev A; Wang P; van den Berg W; Gasciolli V; Cottaz S; Fort S; Thomma BPHJ; Bono JJ; Bisseling T; Limpens E
    New Phytol; 2020 Jan; 225(1):448-460. PubMed ID: 31596956
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The receptor kinase RiSho1 in Rhizophagus irregularis regulates arbuscule development and drought tolerance during arbuscular mycorrhizal symbiosis.
    Wang S; Han L; Ren Y; Hu W; Xie X; Chen H; Tang M
    New Phytol; 2024 Jun; 242(5):2207-2222. PubMed ID: 38481316
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dead Rhizophagus irregularis biomass mysteriously stimulates plant growth.
    Jansa J; Šmilauer P; Borovička J; Hršelová H; Forczek ST; Slámová K; Řezanka T; Rozmoš M; Bukovská P; Gryndler M
    Mycorrhiza; 2020 Jan; 30(1):63-77. PubMed ID: 32062707
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrated multi-omics analysis supports role of lysophosphatidylcholine and related glycerophospholipids in the Lotus japonicus-Glomus intraradices mycorrhizal symbiosis.
    Vijayakumar V; Liebisch G; Buer B; Xue L; Gerlach N; Blau S; Schmitz J; Bucher M
    Plant Cell Environ; 2016 Feb; 39(2):393-415. PubMed ID: 26297195
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The expression of GintPT, the phosphate transporter of Rhizophagus irregularis, depends on the symbiotic status and phosphate availability.
    Fiorilli V; Lanfranco L; Bonfante P
    Planta; 2013 May; 237(5):1267-77. PubMed ID: 23361889
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Medicago truncatula sucrose transporter family: characterization and implication of key members in carbon partitioning towards arbuscular mycorrhizal fungi.
    Doidy J; van Tuinen D; Lamotte O; Corneillat M; Alcaraz G; Wipf D
    Mol Plant; 2012 Nov; 5(6):1346-58. PubMed ID: 22930732
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RiPEIP1, a gene from the arbuscular mycorrhizal fungus Rhizophagus irregularis, is preferentially expressed in planta and may be involved in root colonization.
    Fiorilli V; Belmondo S; Khouja HR; Abbà S; Faccio A; Daghino S; Lanfranco L
    Mycorrhiza; 2016 Aug; 26(6):609-21. PubMed ID: 27075897
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of arbuscular mycorrhizal fungal effects on the heavy metal uptake of a host and a non-host plant species in contact with extraradical mycelial network.
    Mnasri M; Janoušková M; Rydlová J; Abdelly C; Ghnaya T
    Chemosphere; 2017 Mar; 171():476-484. PubMed ID: 28038419
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants.
    Wang S; Chen A; Xie K; Yang X; Luo Z; Chen J; Zeng D; Ren Y; Yang C; Wang L; Feng H; López-Arredondo DL; Herrera-Estrella LR; Xu G
    Proc Natl Acad Sci U S A; 2020 Jul; 117(28):16649-16659. PubMed ID: 32586957
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physiological and transcriptomic response of Medicago truncatula to colonization by high- or low-benefit arbuscular mycorrhizal fungi.
    Cope KR; Kafle A; Yakha JK; Pfeffer PE; Strahan GD; Garcia K; Subramanian S; Bücking H
    Mycorrhiza; 2022 Jul; 32(3-4):281-303. PubMed ID: 35511363
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dysfunction in the arbuscular mycorrhizal symbiosis has consistent but small effects on the establishment of the fungal microbiota in Lotus japonicus.
    Xue L; Almario J; Fabiańska I; Saridis G; Bucher M
    New Phytol; 2019 Oct; 224(1):409-420. PubMed ID: 31125425
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nutrient demand and fungal access to resources control the carbon allocation to the symbiotic partners in tripartite interactions of Medicago truncatula.
    Kafle A; Garcia K; Wang X; Pfeffer PE; Strahan GD; Bücking H
    Plant Cell Environ; 2019 Jan; 42(1):270-284. PubMed ID: 29859016
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The function of the Medicago truncatula ZIP transporter MtZIP14 is linked to arbuscular mycorrhizal fungal colonization.
    Watts-Williams SJ; Wege S; Ramesh SA; Berkowitz O; Xu B; Gilliham M; Whelan J; Tyerman SD
    Plant Cell Environ; 2023 May; 46(5):1691-1704. PubMed ID: 36654510
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Shedding light onto nutrient responses of arbuscular mycorrhizal plants: nutrient interactions may lead to unpredicted outcomes of the symbiosis.
    Corrêa A; Cruz C; Pérez-Tienda J; Ferrol N
    Plant Sci; 2014 May; 221-222():29-41. PubMed ID: 24656333
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SWEET transporters of Medicago lupulina in the arbuscular-mycorrhizal system in the presence of medium level of available phosphorus.
    Kryukov AA; Gorbunova AO; Kudriashova TR; Ivanchenko OB; Shishova MF; Yurkov AP
    Vavilovskii Zhurnal Genet Selektsii; 2023 Jun; 27(3):189-196. PubMed ID: 37293443
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of short-term aluminum stress and mycorrhizal inoculation on nitric oxide metabolism in Medicago truncatula roots.
    Sujkowska-Rybkowska M; Czarnocka W; Sańko-Sawczenko I; Witoń D
    J Plant Physiol; 2018 Jan; 220():145-154. PubMed ID: 29179082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.