These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 27362387)

  • 1. Machine Learning Techniques in Clinical Vision Sciences.
    Caixinha M; Nunes S
    Curr Eye Res; 2017 Jan; 42(1):1-15. PubMed ID: 27362387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promising Artificial Intelligence-Machine Learning-Deep Learning Algorithms in Ophthalmology.
    Balyen L; Peto T
    Asia Pac J Ophthalmol (Phila); 2019; 8(3):264-272. PubMed ID: 31149787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning classifiers in glaucoma.
    Bowd C; Goldbaum MH
    Optom Vis Sci; 2008 Jun; 85(6):396-405. PubMed ID: 18521021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementing Machine Learning in Radiology Practice and Research.
    Kohli M; Prevedello LM; Filice RW; Geis JR
    AJR Am J Roentgenol; 2017 Apr; 208(4):754-760. PubMed ID: 28125274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple ocular diseases detection based on joint sparse multi-task learning.
    Chen X; Xu Y; Yin F; Zhang Z; Wong DW; Wong TY; Liu J
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5260-3. PubMed ID: 26737478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning in ophthalmology: The technical and clinical considerations.
    Ting DSW; Peng L; Varadarajan AV; Keane PA; Burlina PM; Chiang MF; Schmetterer L; Pasquale LR; Bressler NM; Webster DR; Abramoff M; Wong TY
    Prog Retin Eye Res; 2019 Sep; 72():100759. PubMed ID: 31048019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning Techniques for Ophthalmic Data Processing: A Review.
    Sarhan MH; Nasseri MA; Zapp D; Maier M; Lohmann CP; Navab N; Eslami A
    IEEE J Biomed Health Inform; 2020 Dec; 24(12):3338-3350. PubMed ID: 32750971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing humans and deep learning performance for grading AMD: A study in using universal deep features and transfer learning for automated AMD analysis.
    Burlina P; Pacheco KD; Joshi N; Freund DE; Bressler NM
    Comput Biol Med; 2017 Mar; 82():80-86. PubMed ID: 28167406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introduction to Machine Learning for Ophthalmologists.
    Consejo A; Melcer T; Rozema JJ
    Semin Ophthalmol; 2019; 34(1):19-41. PubMed ID: 30500302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined unsupervised-supervised classification of multiparametric PET/MRI data: application to prostate cancer.
    Gatidis S; Scharpf M; Martirosian P; Bezrukov I; Küstner T; Hennenlotter J; Kruck S; Kaufmann S; Schraml C; la Fougère C; Schwenzer NF; Schmidt H
    NMR Biomed; 2015 Jul; 28(7):914-22. PubMed ID: 26014883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using machine learning classifiers to identify glaucomatous change earlier in standard visual fields.
    Sample PA; Goldbaum MH; Chan K; Boden C; Lee TW; Vasile C; Boehm AG; Sejnowski T; Johnson CA; Weinreb RN
    Invest Ophthalmol Vis Sci; 2002 Aug; 43(8):2660-5. PubMed ID: 12147600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated detection of exudates and macula for grading of diabetic macular edema.
    Akram MU; Tariq A; Khan SA; Javed MY
    Comput Methods Programs Biomed; 2014 Apr; 114(2):141-52. PubMed ID: 24548898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining macula clinical signs and patient characteristics for age-related macular degeneration diagnosis: a machine learning approach.
    Fraccaro P; Nicolo M; Bonetto M; Giacomini M; Weller P; Traverso CE; Prosperi M; OSullivan D
    BMC Ophthalmol; 2015 Jan; 15():10. PubMed ID: 25623470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supervised machine learning algorithms to diagnose stress for vehicle drivers based on physiological sensor signals.
    Barua S; Begum S; Ahmed MU
    Stud Health Technol Inform; 2015; 211():241-8. PubMed ID: 25980876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications.
    Prahs P; Radeck V; Mayer C; Cvetkov Y; Cvetkova N; Helbig H; Märker D
    Graefes Arch Clin Exp Ophthalmol; 2018 Jan; 256(1):91-98. PubMed ID: 29127485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a Machine-Learning Classifier for Keratoconus Detection Based on Scheimpflug Tomography.
    Ruiz Hidalgo I; Rodriguez P; Rozema JJ; Ní Dhubhghaill S; Zakaria N; Tassignon MJ; Koppen C
    Cornea; 2016 Jun; 35(6):827-32. PubMed ID: 27055215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ocular scattering.
    Piñero DP; Ortiz D; Alio JL
    Optom Vis Sci; 2010 Sep; 87(9):E682-96. PubMed ID: 20601914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning in ophthalmology: a review.
    Grewal PS; Oloumi F; Rubin U; Tennant MTS
    Can J Ophthalmol; 2018 Aug; 53(4):309-313. PubMed ID: 30119782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning for detection and diagnosis of disease.
    Sajda P
    Annu Rev Biomed Eng; 2006; 8():537-65. PubMed ID: 16834566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of caesarean section and normal vaginal deliveries using foetal heart rate signals and advanced machine learning algorithms.
    Fergus P; Hussain A; Al-Jumeily D; Huang DS; Bouguila N
    Biomed Eng Online; 2017 Jul; 16(1):89. PubMed ID: 28679415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.