BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 27362503)

  • 1. Structural Basis of Selective Aromatic Pollutant Sensing by the Effector Binding Domain of MopR, an NtrC Family Transcriptional Regulator.
    Ray S; Gunzburg MJ; Wilce M; Panjikar S; Anand R
    ACS Chem Biol; 2016 Aug; 11(8):2357-65. PubMed ID: 27362503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression, inducer spectrum, domain structure, and function of MopR, the regulator of phenol degradation in Acinetobacter calcoaceticus NCIB8250.
    Schirmer F; Ehrt S; Hillen W
    J Bacteriol; 1997 Feb; 179(4):1329-36. PubMed ID: 9023219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of an effector specificity subregion within the aromatic-responsive regulators DmpR and XylR by DNA shuffling.
    Skärfstad E; O'Neill E; Garmendia J; Shingler V
    J Bacteriol; 2000 Jun; 182(11):3008-16. PubMed ID: 10809676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of novel bacterial regulatory proteins that detect priority pollutant phenols.
    Wise AA; Kuske CR
    Appl Environ Microbiol; 2000 Jan; 66(1):163-9. PubMed ID: 10618218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An effective strategy for a whole-cell biosensor based on putative effector interaction site of the regulatory DmpR protein.
    Gupta S; Saxena M; Saini N; Mahmooduzzafar ; Kumar R; Kumar A
    PLoS One; 2012; 7(8):e43527. PubMed ID: 22937060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct regulation of the ATPase activity of the transcriptional activator DmpR by aromatic compounds.
    Shingler V; Pavel H
    Mol Microbiol; 1995 Aug; 17(3):505-13. PubMed ID: 8559069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The regulatory N-terminal region of the aromatic-responsive transcriptional activator DmpR constrains nucleotide-triggered multimerisation.
    Wikström P; O'Neill E; Ng LC; Shingler V
    J Mol Biol; 2001 Dec; 314(5):971-84. PubMed ID: 11743715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperativity in ATP Hydrolysis by MopR Is Modulated by Its Signal Reception Domain and by Its Protein and Phenol Concentrations.
    Singh J; Anand R; Horovitz A
    J Bacteriol; 2022 Aug; 204(8):e0017922. PubMed ID: 35862728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure Guided Design of Protein Biosensors for Phenolic Pollutants.
    Ray S; Panjikar S; Anand R
    ACS Sens; 2017 Mar; 2(3):411-418. PubMed ID: 28723202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of an E. coli bioreporter for monitoring trace amounts of phenol by deletion of the inducible sigma54-dependent promoter.
    Peng Z; Yan Y; Xu Y; Takeo M; Yu H; Zhao Z; Zhan Y; Zhang W; Lin M; Chen M
    Biotechnol Lett; 2010 Sep; 32(9):1265-70. PubMed ID: 20533077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three dimensional model for N-terminal A domain of DmpR (2-dimethylphenol) protein based on secondary structure prediction and fold recognition.
    Suresh PS; Kumar R; Kumar A
    In Silico Biol; 2010; 10(5-6):223-33. PubMed ID: 22430356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rosetta comparative modeling for library design: Engineering alternative inducer specificity in a transcription factor.
    Jha RK; Chakraborti S; Kern TL; Fox DT; Strauss CE
    Proteins; 2015 Jul; 83(7):1327-40. PubMed ID: 25974100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and function of the arginine repressor-operator complex from Bacillus subtilis.
    Garnett JA; Marincs F; Baumberg S; Stockley PG; Phillips SE
    J Mol Biol; 2008 May; 379(2):284-98. PubMed ID: 18455186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis of multidrug recognition by BmrR, a transcription activator of a multidrug transporter.
    Zheleznova EE; Markham PN; Neyfakh AA; Brennan RG
    Cell; 1999 Feb; 96(3):353-62. PubMed ID: 10025401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Analysis of the Phenol-Responsive Sensory Domain of the Transcription Activator PoxR.
    Patil VV; Park KH; Lee SG; Woo E
    Structure; 2016 Apr; 24(4):624-630. PubMed ID: 27050690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An updated structural model of the A domain of the Pseudomonas putida XylR regulator poses an atypical interplay with aromatic effectors.
    Dvořák P; Alvarez-Carreño C; Ciordia S; Paradela A; de Lorenzo V
    Environ Microbiol; 2021 Aug; 23(8):4418-4433. PubMed ID: 34097798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of Protein-Based Biosensors for Selective Detection of Benzene Groups of Pollutants.
    Ray S; Panjikar S; Anand R
    ACS Sens; 2018 Sep; 3(9):1632-1638. PubMed ID: 30084640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and genomic DNA analysis of a putative transcription factor SCO5550 from Streptomyces coelicolor A3(2): regulating the expression of gene sco5551 as a transcriptional activator with a novel dimer shape.
    Hayashi T; Tanaka Y; Sakai N; Watanabe N; Tamura T; Tanaka I; Yao M
    Biochem Biophys Res Commun; 2013 May; 435(1):28-33. PubMed ID: 23618855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensing of aromatic compounds by the DmpR transcriptional activator of phenol-catabolizing Pseudomonas sp. strain CF600.
    Shingler V; Moore T
    J Bacteriol; 1994 Mar; 176(6):1555-60. PubMed ID: 8132448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenol sensing in nature is modulated via a conformational switch governed by dynamic allostery.
    Singh J; Sahil M; Ray S; Dcosta C; Panjikar S; Krishnamoorthy G; Mondal J; Anand R
    J Biol Chem; 2022 Oct; 298(10):102399. PubMed ID: 35988639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.