These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1925 related articles for article (PubMed ID: 27362631)

  • 21. Relationships between Chemical Characteristics and Phytotoxicity of Biochar from Poultry Litter Pyrolysis.
    Rombolà AG; Marisi G; Torri C; Fabbri D; Buscaroli A; Ghidotti M; Hornung A
    J Agric Food Chem; 2015 Aug; 63(30):6660-7. PubMed ID: 26151387
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gasified Grass and Wood Biochars Facilitate Plant Establishment in Acid Mine Soils.
    Phillips CL; Trippe KM; Whittaker G; Griffith SM; Johnson MG; Banowetz GM
    J Environ Qual; 2016 May; 45(3):1013-20. PubMed ID: 27136169
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits.
    Domingues RR; Trugilho PF; Silva CA; Melo ICNA; Melo LCA; Magriotis ZM; Sánchez-Monedero MA
    PLoS One; 2017; 12(5):e0176884. PubMed ID: 28493951
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative effects of biochar-nanosheets and conventional organic-amendments on health risks abatement of potentially toxic elements via consumption of wheat grown on industrially contaminated-soil.
    Yousaf B; Liu G; Abbas Q; Ullah H; Wang R; Zia-Ur-Rehman M; Amina ; Niu Z
    Chemosphere; 2018 Feb; 192():161-170. PubMed ID: 29101855
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: A meta-analysis.
    Gao S; DeLuca TH; Cleveland CC
    Sci Total Environ; 2019 Mar; 654():463-472. PubMed ID: 30447585
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Critical study of crop-derived biochars for soil amendment and pharmaceutical ecotoxicity reduction.
    Caban M; Folentarska A; Lis H; Kobylis P; Bielicka-Giełdoń A; Kumirska J; Ciesielski W; Stepnowski P
    Chemosphere; 2020 Jun; 248():125976. PubMed ID: 32006830
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Value of biochars from Miscanthus x giganteus cultivated on contaminated soils to decrease the availability of metals in multicontaminated aqueous solutions.
    Janus A; Pelfrêne A; Sahmer K; Heymans S; Deboffe C; Douay F; Waterlot C
    Environ Sci Pollut Res Int; 2017 Aug; 24(22):18204-18217. PubMed ID: 28634798
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In-situ stabilization of potentially toxic elements in two industrial polluted soils ameliorated with rock phosphate-modified biochars.
    Hussain T; Ahmed SR; Lahori AH; Mierzwa-Hersztek M; Vambol V; Khan AA; Rafique L; Wasia S; Shahid MF; Zengqiang Z
    Environ Pollut; 2022 Sep; 309():119733. PubMed ID: 35820570
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sewage sludge biochars management-Ecotoxicity, mobility of heavy metals, and soil microbial biomass.
    Mierzwa-Hersztek M; Gondek K; Klimkowicz-Pawlas A; Baran A; Bajda T
    Environ Toxicol Chem; 2018 Apr; 37(4):1197-1207. PubMed ID: 29150956
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Solubility of lead and copper in biochar-amended small arms range soils: influence of soil organic carbon and pH.
    Uchimiya M; Bannon DI
    J Agric Food Chem; 2013 Aug; 61(32):7679-88. PubMed ID: 23869882
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties.
    Kloss S; Zehetner F; Dellantonio A; Hamid R; Ottner F; Liedtke V; Schwanninger M; Gerzabek MH; Soja G
    J Environ Qual; 2012; 41(4):990-1000. PubMed ID: 22751041
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemical characterization of biochar and assessment of the nutrient dynamics by means of preliminary plant growth tests.
    Prasad M; Tzortzakis N; McDaniel N
    J Environ Manage; 2018 Jun; 216():89-95. PubMed ID: 28412057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessing biochar ecotoxicology for soil amendment by root phytotoxicity bioassays.
    Visioli G; Conti FD; Menta C; Bandiera M; Malcevschi A; Jones DL; Vamerali T
    Environ Monit Assess; 2016 Mar; 188(3):166. PubMed ID: 26884353
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phytotoxicity attenuation in Vigna radiata under heavy metal stress at the presence of biochar and N fixing bacteria.
    Seneviratne M; Weerasundara L; Ok YS; Rinklebe J; Vithanage M
    J Environ Manage; 2017 Jan; 186(Pt 2):293-300. PubMed ID: 27527669
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of interaction effects of biochars and silicon on growth and chemical composition of Zea mays L. in a Ni-polluted calcareous soil.
    Boostani HR; Hardie AG; Najafi-Ghiri M; Bijanzadeh E
    Sci Rep; 2023 Nov; 13(1):19935. PubMed ID: 37968504
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of biochars on bioaccumulation and human health risks of potentially toxic elements in wheat (Triticum aestivum L.) cultivated on industrially contaminated soil.
    Muhammad N; Nafees M; Khan MH; Ge L; Lisak G
    Environ Pollut; 2020 May; 260():113887. PubMed ID: 31982801
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of biochar aged in acidic soil on ecosystem engineers and two tropical agricultural plants.
    Anyanwu IN; Alo MN; Onyekwere AM; Crosse JD; Nworie O; Chamba EB
    Ecotoxicol Environ Saf; 2018 May; 153():116-126. PubMed ID: 29425842
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recycling organic wastes to agricultural land as a way to improve its quality: A field study to evaluate benefits and risks.
    Alvarenga P; Palma P; Mourinha C; Farto M; Dôres J; Patanita M; Cunha-Queda C; Natal-da-Luz T; Renaud M; Sousa JP
    Waste Manag; 2017 Mar; 61():582-592. PubMed ID: 28089401
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chicken manure biochar as liming and nutrient source for acid Appalachian soil.
    Hass A; Gonzalez JM; Lima IM; Godwin HW; Halvorson JJ; Boyer DG
    J Environ Qual; 2012; 41(4):1096-106. PubMed ID: 22751051
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Copper uptake, physiological response, and phytoremediation potential of
    Gonzaga MIS; de Jesus Santos JC; Ganassali Junior LF; Fontes PTN; Araújo JDS; Gonzaga TAS
    Int J Phytoremediation; 2022; 24(5):474-482. PubMed ID: 34353182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 97.