BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 27362731)

  • 1. Increasing Stability and Activity of Core-Shell Catalysts by Preferential Segregation of Oxide on Edges and Vertexes: Oxygen Reduction on Ti-Au@Pt/C.
    Hu J; Wu L; Kuttiyiel KA; Goodman KR; Zhang C; Zhu Y; Vukmirovic MB; White MG; Sasaki K; Adzic RR
    J Am Chem Soc; 2016 Jul; 138(29):9294-300. PubMed ID: 27362731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Platinum-monolayer shell on AuNi(0.5)Fe nanoparticle core electrocatalyst with high activity and stability for the oxygen reduction reaction.
    Gong K; Su D; Adzic RR
    J Am Chem Soc; 2010 Oct; 132(41):14364-6. PubMed ID: 20873798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molybdenum-Doped PdPt@Pt Core-Shell Octahedra Supported by Ionic Block Copolymer-Functionalized Graphene as a Highly Active and Durable Oxygen Reduction Electrocatalyst.
    Cho KY; Yeom YS; Seo HY; Kumar P; Lee AS; Baek KY; Yoon HG
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1524-1535. PubMed ID: 27990809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pd@Pt Core-Shell Concave Decahedra: A Class of Catalysts for the Oxygen Reduction Reaction with Enhanced Activity and Durability.
    Wang X; Vara M; Luo M; Huang H; Ruditskiy A; Park J; Bao S; Liu J; Howe J; Chi M; Xie Z; Xia Y
    J Am Chem Soc; 2015 Dec; 137(47):15036-42. PubMed ID: 26566188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the composition of core-shell Au-Pt nanoparticle electrocatalysts for the oxygen reduction reaction.
    Li X; Liu J; He W; Huang Q; Yang H
    J Colloid Interface Sci; 2010 Apr; 344(1):132-6. PubMed ID: 20060983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanocatalyst superior to Pt for oxygen reduction reactions: the case of core/shell Ag(Au)/CuPd nanoparticles.
    Guo S; Zhang X; Zhu W; He K; Su D; Mendoza-Garcia A; Ho SF; Lu G; Sun S
    J Am Chem Soc; 2014 Oct; 136(42):15026-33. PubMed ID: 25279704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface segregation and stability of core-shell alloy catalysts for oxygen reduction in acid medium.
    Ramírez-Caballero GE; Ma Y; Callejas-Tovar R; Balbuena PB
    Phys Chem Chem Phys; 2010 Mar; 12(9):2209-18. PubMed ID: 20165770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen reduction electrocatalyst of Pt on Au nanoparticles through spontaneous deposition.
    Dai Y; Chen S
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):823-9. PubMed ID: 25513894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Au Catalysis Strategy for the Synthesis of Au@Pt Core-Shell Nanoelectrocatalyst with Self-Controlled Quasi-Monolayer Pt Skin.
    Zhang Y; Li X; Li K; Xue B; Zhang C; Du C; Wu Z; Chen W
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):32688-32697. PubMed ID: 28884575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser-synthesized graphite carbon encased gold nanoparticles with specific reaction channels for efficient oxygen reduction.
    Zhang C; Li P; Wang X; Liu J; Ye Y; Chen Q; Zhang D; Liang C
    J Colloid Interface Sci; 2020 Mar; 563():74-80. PubMed ID: 31865050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-temperature catalytic reforming of n-hexane over supported and core-shell Pt nanoparticle catalysts: role of oxide-metal interface and thermal stability.
    An K; Zhang Q; Alayoglu S; Musselwhite N; Shin JY; Somorjai GA
    Nano Lett; 2014 Aug; 14(8):4907-12. PubMed ID: 25078630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles.
    Nilekar AU; Alayoglu S; Eichhorn B; Mavrikakis M
    J Am Chem Soc; 2010 Jun; 132(21):7418-28. PubMed ID: 20459102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of highly active and stable Au-PtCu core-shell nanoparticles for oxygen reduction reaction.
    Hsu C; Huang C; Hao Y; Liu F
    Phys Chem Chem Phys; 2012 Nov; 14(42):14696-701. PubMed ID: 23032948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Platinum monolayer on nonnoble metal-noble metal core-shell nanoparticle electrocatalysts for O2 reduction.
    Zhang J; Lima FH; Shao MH; Sasaki K; Wang JX; Hanson J; Adzic RR
    J Phys Chem B; 2005 Dec; 109(48):22701-4. PubMed ID: 16853957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomass-derived N,S co-doped 3D multichannel carbon supported Au@Pd@Pt catalysts for oxygen reduction.
    Sun Y; Zhang W; Wang Q; Han N; Núñez-Delgado A; Cao Y; Si W; Wang F; Liu S
    Environ Res; 2021 Nov; 202():111684. PubMed ID: 34260960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen reduction reaction activity and structural stability of Pt-Au nanoparticles prepared by arc-plasma deposition.
    Takahashi S; Chiba H; Kato T; Endo S; Hayashi T; Todoroki N; Wadayama T
    Phys Chem Chem Phys; 2015 Jul; 17(28):18638-44. PubMed ID: 26118789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The deposition of Au-Pt core-shell nanoparticles on reduced graphene oxide and their catalytic activity.
    Cui X; Wu S; Jungwirth S; Chen Z; Wang Z; Wang L; Li Y
    Nanotechnology; 2013 Jul; 24(29):295402. PubMed ID: 23807086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalysts of self-assembled Pt@CeO
    Wei Y; Jiao J; Zhang X; Jin B; Zhao Z; Xiong J; Li Y; Liu J; Li J
    Nanoscale; 2017 Mar; 9(13):4558-4571. PubMed ID: 28321449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A New Core/Shell NiAu/Au Nanoparticle Catalyst with Pt-like Activity for Hydrogen Evolution Reaction.
    Lv H; Xi Z; Chen Z; Guo S; Yu Y; Zhu W; Li Q; Zhang X; Pan M; Lu G; Mu S; Sun S
    J Am Chem Soc; 2015 May; 137(18):5859-62. PubMed ID: 25927960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Ru@Pt Core-Shell Catalysts for Enhanced Electrochemical Oxygen Reduction Mass Activity and Stability.
    Jackson A; Strickler A; Higgins D; Jaramillo TF
    Nanomaterials (Basel); 2018 Jan; 8(1):. PubMed ID: 29329264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.