These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 27362731)

  • 41. Progress in the Development of Oxygen Reduction Reaction Catalysts for Low-Temperature Fuel Cells.
    Li D; Lv H; Kang Y; Markovic NM; Stamenkovic VR
    Annu Rev Chem Biomol Eng; 2016 Jun; 7():509-32. PubMed ID: 27070766
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Exploring the first steps in core-shell electrocatalyst preparation: in situ characterization of the underpotential deposition of Cu on supported Au nanoparticles.
    Price SW; Speed JD; Kannan P; Russell AE
    J Am Chem Soc; 2011 Dec; 133(48):19448-58. PubMed ID: 22032178
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Core(Fe)-shell(Au) nanoparticles obtained from thin Fe/Au bilayers employing surface segregation.
    Amram D; Rabkin E
    ACS Nano; 2014 Oct; 8(10):10687-93. PubMed ID: 25211205
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sulfur-doped graphene as a potential alternative metal-free electrocatalyst and Pt-catalyst supporting material for oxygen reduction reaction.
    Park JE; Jang YJ; Kim YJ; Song MS; Yoon S; Kim DH; Kim SJ
    Phys Chem Chem Phys; 2014 Jan; 16(1):103-9. PubMed ID: 24220278
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dataset on electrochemical stability and activity of Au-decorated Pt surface for oxygen reduction reaction in acidic media.
    Park YM; Kim HJ
    Data Brief; 2020 Feb; 28():104897. PubMed ID: 31872012
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Design and Preparation of Supported Au Catalyst with Enhanced Catalytic Activities by Rationally Positioning Au Nanoparticles on Anatase.
    Wang L; Wang H; Rice AE; Zhang W; Li X; Chen M; Meng X; Lewis JP; Xiao FS
    J Phys Chem Lett; 2015 Jun; 6(12):2345-9. PubMed ID: 26266615
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications.
    Yang G; Chen D; Lv P; Kong X; Sun Y; Wang Z; Yuan Z; Liu H; Yang J
    Sci Rep; 2016 Oct; 6():35252. PubMed ID: 27734945
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis and characterization of Pd@Pt-Ni core-shell octahedra with high activity toward oxygen reduction.
    Choi SI; Shao M; Lu N; Ruditskiy A; Peng HC; Park J; Guerrero S; Wang J; Kim MJ; Xia Y
    ACS Nano; 2014 Oct; 8(10):10363-71. PubMed ID: 25247667
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Unique Cu@CuPt Core-Shell Concave Octahedron with Enhanced Methanol Oxidation Activity.
    Wang Q; Zhao Z; Jia Y; Wang M; Qi W; Pang Y; Yi J; Zhang Y; Li Z; Zhang Z
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):36817-36827. PubMed ID: 28975789
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances.
    Kuai L; Geng B; Wang S; Sang Y
    Chemistry; 2012 Jul; 18(30):9423-9. PubMed ID: 22714952
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions.
    Chen D; Li C; Liu H; Ye F; Yang J
    Sci Rep; 2015 Jul; 5():11949. PubMed ID: 26144550
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Skeletal octahedral nanoframe with Cartesian coordinates via geometrically precise nanoscale phase segregation in a Pt@Ni core-shell nanocrystal.
    Oh A; Baik H; Choi DS; Cheon JY; Kim B; Kim H; Kwon SJ; Joo SH; Jung Y; Lee K
    ACS Nano; 2015 Mar; 9(3):2856-67. PubMed ID: 25734892
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nanostructured Ti(0.7)Mo(0.3)O2 support enhances electron transfer to Pt: high-performance catalyst for oxygen reduction reaction.
    Ho VT; Pan CJ; Rick J; Su WN; Hwang BJ
    J Am Chem Soc; 2011 Aug; 133(30):11716-24. PubMed ID: 21707063
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nanostructured polyaniline-decorated Pt/C@PANI core-shell catalyst with enhanced durability and activity.
    Chen S; Wei Z; Qi X; Dong L; Guo YG; Wan L; Shao Z; Li L
    J Am Chem Soc; 2012 Aug; 134(32):13252-5. PubMed ID: 22849618
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Strong metal-support interactions impart activity in the oxygen reduction reaction: Au monolayer on Mo
    Cheng C; Zhang X; Fu Z; Yang Z
    J Phys Condens Matter; 2018 Nov; 30(47):475201. PubMed ID: 30387445
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Morphology and lateral strain control of Pt nanoparticles via core-shell construction using alloy AgPd core toward oxygen reduction reaction.
    Yang J; Yang J; Ying JY
    ACS Nano; 2012 Nov; 6(11):9373-82. PubMed ID: 23061786
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Performance and durability of Pt/C cathode catalysts with different kinds of carbons for polymer electrolyte fuel cells characterized by electrochemical and in situ XAFS techniques.
    Nagasawa K; Takao S; Higashi K; Nagamatsu S; Samjeské G; Imaizumi Y; Sekizawa O; Yamamoto T; Uruga T; Iwasawa Y
    Phys Chem Chem Phys; 2014 Jun; 16(21):10075-87. PubMed ID: 24513596
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Facile Synthesis of Quasi-One-Dimensional Au/PtAu Heterojunction Nanotubes and Their Application as Catalysts in an Oxygen-Reduction Reaction.
    Cai K; Liu J; Zhang H; Huang Z; Lu Z; Foda MF; Li T; Han H
    Chemistry; 2015 May; 21(20):7556-61. PubMed ID: 25833689
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen.
    Alayoglu S; Nilekar AU; Mavrikakis M; Eichhorn B
    Nat Mater; 2008 Apr; 7(4):333-8. PubMed ID: 18345004
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multimetallic core/interlayer/shell nanostructures as advanced electrocatalysts.
    Kang Y; Snyder J; Chi M; Li D; More KL; Markovic NM; Stamenkovic VR
    Nano Lett; 2014 Nov; 14(11):6361-7. PubMed ID: 25299322
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.