BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 27362805)

  • 1. Tubular epithelial cells in renal clear cell carcinoma express high RIPK1/3 and show increased susceptibility to TNF receptor 1-induced necroptosis.
    Al-Lamki RS; Lu W; Manalo P; Wang J; Warren AY; Tolkovsky AM; Pober JS; Bradley JR
    Cell Death Dis; 2016 Jun; 7(6):e2287. PubMed ID: 27362805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-Bound Polysaccharides from
    Pawlikowska M; Jędrzejewski T; Brożyna AA; Wrotek S
    Cell Physiol Biochem; 2020 Jun; 54(4):591-604. PubMed ID: 32531147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RIPK3 contributes to TNFR1-mediated RIPK1 kinase-dependent apoptosis in conditions of cIAP1/2 depletion or TAK1 kinase inhibition.
    Dondelinger Y; Aguileta MA; Goossens V; Dubuisson C; Grootjans S; Dejardin E; Vandenabeele P; Bertrand MJ
    Cell Death Differ; 2013 Oct; 20(10):1381-92. PubMed ID: 23892367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TNFR1- and TNFR2-mediated signaling pathways in human kidney are cell type-specific and differentially contribute to renal injury.
    Al-Lamki RS; Wang J; Vandenabeele P; Bradley JA; Thiru S; Luo D; Min W; Pober JS; Bradley JR
    FASEB J; 2005 Oct; 19(12):1637-45. PubMed ID: 16195372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zinc finger protein 91 mediates necroptosis by initiating RIPK1-RIPK3-MLKL signal transduction in response to TNF receptor 1 ligation.
    Zhong Y; Zhang ZH; Wang JY; Xing Y; Ri MH; Jin HL; Zuo HX; Li MY; Ma J; Jin X
    Toxicol Lett; 2022 Mar; 356():75-88. PubMed ID: 34942311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TNF can activate RIPK3 and cause programmed necrosis in the absence of RIPK1.
    Moujalled DM; Cook WD; Okamoto T; Murphy J; Lawlor KE; Vince JE; Vaux DL
    Cell Death Dis; 2013 Jan; 4(1):e465. PubMed ID: 23328672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis.
    Dannappel M; Vlantis K; Kumari S; Polykratis A; Kim C; Wachsmuth L; Eftychi C; Lin J; Corona T; Hermance N; Zelic M; Kirsch P; Basic M; Bleich A; Kelliher M; Pasparakis M
    Nature; 2014 Sep; 513(7516):90-4. PubMed ID: 25132550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The neurotoxicant PCB-95 by increasing the neuronal transcriptional repressor REST down-regulates caspase-8 and increases Ripk1, Ripk3 and MLKL expression determining necroptotic neuronal death.
    Guida N; Laudati G; Serani A; Mascolo L; Molinaro P; Montuori P; Di Renzo G; Canzoniero LMT; Formisano L
    Biochem Pharmacol; 2017 Oct; 142():229-241. PubMed ID: 28676433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FKBP12 mediates necroptosis by initiating RIPK1-RIPK3-MLKL signal transduction in response to TNF receptor 1 ligation.
    Wang Z; Feng J; Yu J; Chen G
    J Cell Sci; 2019 May; 132(10):. PubMed ID: 31028177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Necroptosis induced by RIPK3 requires MLKL but not Drp1.
    Moujalled DM; Cook WD; Murphy JM; Vaux DL
    Cell Death Dis; 2014 Feb; 5(2):e1086. PubMed ID: 24577084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smac mimetic triggers necroptosis in pancreatic carcinoma cells when caspase activation is blocked.
    Hannes S; Abhari BA; Fulda S
    Cancer Lett; 2016 Sep; 380(1):31-8. PubMed ID: 27267809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential roles of RIPK1 and RIPK3 in TNF-induced necroptosis and chemotherapeutic agent-induced cell death.
    Moriwaki K; Bertin J; Gough PJ; Orlowski GM; Chan FK
    Cell Death Dis; 2015 Feb; 6(2):e1636. PubMed ID: 25675296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Key necroptotic proteins are required for Smac mimetic-mediated sensitization of cholangiocarcinoma cells to TNF-α and chemotherapeutic gemcitabine-induced necroptosis.
    Akara-Amornthum P; Lomphithak T; Choksi S; Tohtong R; Jitkaew S
    PLoS One; 2020; 15(1):e0227454. PubMed ID: 31914150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TNFR2 unlocks a RIPK1 kinase activity-dependent mode of proinflammatory TNFR1 signaling.
    Siegmund D; Ehrenschwender M; Wajant H
    Cell Death Dis; 2018 Sep; 9(9):921. PubMed ID: 30206205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis.
    Newton K; Wickliffe KE; Dugger DL; Maltzman A; Roose-Girma M; Dohse M; Kőműves L; Webster JD; Dixit VM
    Nature; 2019 Oct; 574(7778):428-431. PubMed ID: 31511692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Herpes simplex virus 1 ICP6 impedes TNF receptor 1-induced necrosome assembly during compartmentalization to detergent-resistant membrane vesicles.
    Ali M; Roback L; Mocarski ES
    J Biol Chem; 2019 Jan; 294(3):991-1004. PubMed ID: 30504227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Angiotensin II triggers RIPK3-MLKL-mediated necroptosis by activating the Fas/FasL signaling pathway in renal tubular cells.
    Zhu Y; Cui H; Lv J; Li G; Li X; Ye F; Zhong L
    PLoS One; 2020; 15(3):e0228385. PubMed ID: 32134954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3.
    Dillon CP; Weinlich R; Rodriguez DA; Cripps JG; Quarato G; Gurung P; Verbist KC; Brewer TL; Llambi F; Gong YN; Janke LJ; Kelliher MA; Kanneganti TD; Green DR
    Cell; 2014 May; 157(5):1189-202. PubMed ID: 24813850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RIPK1 prevents TRADD-driven, but TNFR1 independent, apoptosis during development.
    Anderton H; Bandala-Sanchez E; Simpson DS; Rickard JA; Ng AP; Di Rago L; Hall C; Vince JE; Silke J; Liccardi G; Feltham R
    Cell Death Differ; 2019 May; 26(5):877-889. PubMed ID: 30185824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis.
    Takahashi N; Vereecke L; Bertrand MJ; Duprez L; Berger SB; Divert T; Gonçalves A; Sze M; Gilbert B; Kourula S; Goossens V; Lefebvre S; Günther C; Becker C; Bertin J; Gough PJ; Declercq W; van Loo G; Vandenabeele P
    Nature; 2014 Sep; 513(7516):95-9. PubMed ID: 25186904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.