These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 27362947)

  • 1. Arthropod evolution and development: recent insights from chelicerates and myriapods.
    Leite DJ; McGregor AP
    Curr Opin Genet Dev; 2016 Aug; 39():93-100. PubMed ID: 27362947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hox genes and the phylogeny of the arthropods.
    Cook CE; Smith ML; Telford MJ; Bastianello A; Akam M
    Curr Biol; 2001 May; 11(10):759-63. PubMed ID: 11378385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Genomics Reveals Thousands of Novel Chemosensory Genes and Massive Changes in Chemoreceptor Repertories across Chelicerates.
    Vizueta J; Rozas J; Sánchez-Gracia A
    Genome Biol Evol; 2018 Apr; 10(5):1221-1236. PubMed ID: 29788250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial protein phylogeny joins myriapods with chelicerates.
    Hwang UW; Friedrich M; Tautz D; Park CJ; Kim W
    Nature; 2001 Sep; 413(6852):154-7. PubMed ID: 11557978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular phylogeny of arthropods and their relatives: polyphyletic origin of arthropodization.
    Min GS; Kim SH; Kim W
    Mol Cells; 1998 Feb; 8(1):75-83. PubMed ID: 9571635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Of mites and millipedes: recent progress in resolving the base of the arthropod tree.
    Caravas J; Friedrich M
    Bioessays; 2010 Jun; 32(6):488-95. PubMed ID: 20486135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mitochondrial genome of the house centipede scutigera and the monophyly versus paraphyly of myriapods.
    Negrisolo E; Minelli A; Valle G
    Mol Biol Evol; 2004 Apr; 21(4):770-80. PubMed ID: 14963096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods.
    Friedrich M; Tautz D
    Nature; 1995 Jul; 376(6536):165-7. PubMed ID: 7603566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The colonization of land by animals: molecular phylogeny and divergence times among arthropods.
    Pisani D; Poling LL; Lyons-Weiler M; Hedges SB
    BMC Biol; 2004 Jan; 2():1. PubMed ID: 14731304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Phylogeny and Evolutionary History of Arthropods.
    Giribet G; Edgecombe GD
    Curr Biol; 2019 Jun; 29(12):R592-R602. PubMed ID: 31211983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. More than one way to produce protein diversity: duplication and limited alternative splicing of an adhesion molecule gene in basal arthropods.
    Brites D; Brena C; Ebert D; Du Pasquier L
    Evolution; 2013 Oct; 67(10):2999-3011. PubMed ID: 24094349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The expression pattern of genes involved in early neurogenesis suggests distinct and conserved functions in the diplopod Glomeris marginata.
    Pioro HL; Stollewerk A
    Dev Genes Evol; 2006; 216(7-8):417-30. PubMed ID: 16724224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A congruent solution to arthropod phylogeny: phylogenomics, microRNAs and morphology support monophyletic Mandibulata.
    Rota-Stabelli O; Campbell L; Brinkmann H; Edgecombe GD; Longhorn SJ; Peterson KJ; Pisani D; Philippe H; Telford MJ
    Proc Biol Sci; 2011 Jan; 278(1703):298-306. PubMed ID: 20702459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurogenesis in myriapods and chelicerates and its importance for understanding arthropod relationships.
    Stollewerk A; Chipman AD
    Integr Comp Biol; 2006 Apr; 46(2):195-206. PubMed ID: 21672734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin.
    Mallatt JM; Garey JR; Shultz JW
    Mol Phylogenet Evol; 2004 Apr; 31(1):178-91. PubMed ID: 15019618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements.
    Boore JL; Collins TM; Stanton D; Daehler LL; Brown WM
    Nature; 1995 Jul; 376(6536):163-5. PubMed ID: 7603565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An embryological perspective on the early arthropod fossil record.
    Chipman AD
    BMC Evol Biol; 2015 Dec; 15():285. PubMed ID: 26678148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel rearrangements of arthropod mitochondrial DNA detected with long-PCR: applications to arthropod phylogeny and evolution.
    Roehrdanz RL; Degrugillier ME; Black WC
    Mol Biol Evol; 2002 Jun; 19(6):841-9. PubMed ID: 12032240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The development of crustacean limbs and the evolution of arthropods.
    Panganiban G; Sebring A; Nagy L; Carroll S
    Science; 1995 Nov; 270(5240):1363-6. PubMed ID: 7481825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mity model: Tetranychus urticae, a candidate for chelicerate model organism.
    Grbic M; Khila A; Lee KZ; Bjelica A; Grbic V; Whistlecraft J; Verdon L; Navajas M; Nagy L
    Bioessays; 2007 May; 29(5):489-96. PubMed ID: 17450600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.