BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 27363281)

  • 1. Synergistic Effects of Self-Doped Nanostructures as Charge Trapping Elements in Organic Field Effect Transistor Memory.
    Ling H; Lin J; Yi M; Liu B; Li W; Lin Z; Xie L; Bao Y; Guo F; Huang W
    ACS Appl Mater Interfaces; 2016 Jul; 8(29):18969-77. PubMed ID: 27363281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stretchable OFET Memories: Tuning the Morphology and the Charge-Trapping Ability of Conjugated Block Copolymers through Soft Segment Branching.
    Hsu LC; Isono T; Lin YC; Kobayashi S; Chiang YC; Jiang DH; Hung CC; Ercan E; Yang WC; Hsieh HC; Tajima K; Satoh T; Chen WC
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2932-2943. PubMed ID: 33423476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unveiling the Photoinduced Recovery Mystery in Conjugated Polymer-Based Transistor Memory.
    Chen MN; Chang SW; Prakoso SP; Li YT; Chen KL; Chiu YC
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44656-44662. PubMed ID: 34506100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution-Processed Wide-Bandgap Organic Semiconductor Nanostructures Arrays for Nonvolatile Organic Field-Effect Transistor Memory.
    Li W; Guo F; Ling H; Liu H; Yi M; Zhang P; Wang W; Xie L; Huang W
    Small; 2018 Jan; 14(2):. PubMed ID: 29165914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Filter-Free Selective Light Monitoring by Organic Field-Effect Transistor Memories with a Tunable Blend Charge-Trapping Layer.
    Zhang LX; Gao X; Lv JJ; Zhong YN; Xu C; Xu JL; Wang SD
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40366-40371. PubMed ID: 31595743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonvolatile Transistor Memory with Self-Assembled Semiconducting Polymer Nanodomain Floating Gates.
    Wang W; Kim KL; Cho SM; Lee JH; Park C
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33863-33873. PubMed ID: 27960399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Performance Nonvolatile Transistor Memories Utilizing Functional Polyimide-Based Supramolecular Electrets.
    Tung WY; Li MH; Wu HC; Liu HY; Hsieh YT; Chen WC
    Chem Asian J; 2016 May; 11(10):1631-40. PubMed ID: 27061212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Performance Nonvolatile Organic Field-Effect Transistor Memory Based on Organic Semiconductor Heterostructures of Pentacene/P13/Pentacene as Both Charge Transport and Trapping Layers.
    Li W; Guo F; Ling H; Zhang P; Yi M; Wang L; Wu D; Xie L; Huang W
    Adv Sci (Weinh); 2017 Aug; 4(8):1700007. PubMed ID: 28852619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 4,5-Diazafluorene-Based Donor-Acceptor Small Molecules as Charge Trapping Elements for Tunable Nonvolatile Organic Transistor Memory.
    Yu Y; Bian LY; Chen JG; Ma QH; Li YX; Ling HF; Feng QY; Xie LH; Yi MD; Huang W
    Adv Sci (Weinh); 2018 Dec; 5(12):1800747. PubMed ID: 30581695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transistor memory devices with large memory windows, using multi-stacking of densely packed, hydrophobic charge trapping metal nanoparticle array.
    Cho I; Kim BJ; Ryu SW; Cho JH; Cho J
    Nanotechnology; 2014 Dec; 25(50):505604. PubMed ID: 25426661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly reliable top-gated thin-film transistor memory with semiconducting, tunneling, charge-trapping, and blocking layers all of flexible polymers.
    Wang W; Hwang SK; Kim KL; Lee JH; Cho SM; Park C
    ACS Appl Mater Interfaces; 2015 May; 7(20):10957-65. PubMed ID: 25943406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-performance Nonvolatile Organic Photoelectronic Transistor Memory Based on Bulk Heterojunction Structure.
    Lan S; Zhong J; Li E; Yan Y; Wu X; Chen Q; Lin W; Chen H; Guo T
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):31716-31724. PubMed ID: 32551530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organic field-effect transistor memory devices using discrete ferritin nanoparticle-based gate dielectrics.
    Kim BJ; Ko Y; Cho JH; Cho J
    Small; 2013 Nov; 9(22):3784-91. PubMed ID: 23666682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution-Processed Nonvolatile Organic Transistor Memory Based on Semiconductor Blends.
    Park Y; Baeg KJ; Kim C
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8327-8336. PubMed ID: 30707007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Donor-Acceptor Effect of Carbazole-Based Conjugated Polymer Electrets on Photoresponsive Flash Organic Field-Effect Transistor Memories.
    Chen CH; Wang Y; Michinobu T; Chang SW; Chiu YC; Ke CY; Liou GS
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6144-6150. PubMed ID: 31918540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Achievement of High-Response Organic Field-Effect Transistor NO₂ Sensor by Using the Synergistic Effect of ZnO/PMMA Hybrid Dielectric and CuPc/Pentacene Heterojunction.
    Han S; Cheng J; Fan H; Yu J; Li L
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27775653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charge-Storage Aromatic Amino Compounds for Nonvolatile Organic Transistor Memory Devices.
    Zheng C; Tong T; Hu Y; Gu Y; Wu H; Wu D; Meng H; Yi M; Ma J; Gao D; Huang W
    Small; 2018 Jun; 14(25):e1800756. PubMed ID: 29806210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic High Charge-Storage Capacity for Multi-level Flexible Organic Flash Memory.
    Kang M; Khim D; Park WT; Kim J; Kim J; Noh YY; Baeg KJ; Kim DY
    Sci Rep; 2015 Jul; 5():12299. PubMed ID: 26201747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Achieving high mobility, low-voltage operating organic field-effect transistor nonvolatile memory by an ultraviolet-ozone treating ferroelectric terpolymer.
    Xiang L; Wang W; Xie W
    Sci Rep; 2016 Nov; 6():36291. PubMed ID: 27824101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organic Transistor Nonvolatile Memory with Three-Level Information Storage and Optical Detection Functions.
    Xu T; Guo S; Qi W; Li S; Xu M; Wang W
    ACS Appl Mater Interfaces; 2020 May; 12(19):21952-21960. PubMed ID: 32319288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.