These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 27363367)

  • 1. Engineering and Assembly of Protein Modules into Functional Molecular Systems.
    Hirschi S; Stauffer M; Harder D; Müller DJ; Meier W; Fotiadis D
    Chimia (Aarau); 2016; 70(6):398-401. PubMed ID: 27363367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic Biology: Bottom-Up Assembly of Molecular Systems.
    Hirschi S; Ward TR; Meier WP; Müller DJ; Fotiadis D
    Chem Rev; 2022 Nov; 122(21):16294-16328. PubMed ID: 36179355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems.
    Wasielewski MR
    Acc Chem Res; 2009 Dec; 42(12):1910-21. PubMed ID: 19803479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and construction of self-assembling supramolecular protein complexes using artificial and fusion proteins as nanoscale building blocks.
    Kobayashi N; Arai R
    Curr Opin Biotechnol; 2017 Aug; 46():57-65. PubMed ID: 28160725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering a Chemical Switch into the Light-driven Proton Pump Proteorhodopsin by Cysteine Mutagenesis and Thiol Modification.
    Harder D; Hirschi S; Ucurum Z; Goers R; Meier W; Müller DJ; Fotiadis D
    Angew Chem Int Ed Engl; 2016 Jul; 55(31):8846-9. PubMed ID: 27294681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concepts and schemes for the re-engineering of physical protein modules: generating nanodevices via targeted replacements with constrained amino acids.
    Alemán C; Zanuy D; Jiménez AI; Cativiela C; Haspel N; Zheng J; Casanovas J; Wolfson H; Nussinov R
    Phys Biol; 2006 Feb; 3(1):S54-62. PubMed ID: 16582465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic biology: new engineering rules for an emerging discipline.
    Andrianantoandro E; Basu S; Karig DK; Weiss R
    Mol Syst Biol; 2006; 2():2006.0028. PubMed ID: 16738572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Principles of nanostructure design with protein building blocks.
    Tsai CJ; Zheng J; Zanuy D; Haspel N; Wolfson H; Alemán C; Nussinov R
    Proteins; 2007 Jul; 68(1):1-12. PubMed ID: 17407160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein design in systems metabolic engineering for industrial strain development.
    Chen Z; Zeng AP
    Biotechnol J; 2013 May; 8(5):523-33. PubMed ID: 23589416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant and bacterial systems biology as platform for plant synthetic bio(techno)logy.
    Zurbriggen MD; Moor A; Weber W
    J Biotechnol; 2012 Jul; 160(1-2):80-90. PubMed ID: 22306308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomolecular templating of functional hybrid nanostructures using repeat protein scaffolds.
    Romera D; Couleaud P; Mejias SH; Aires A; Cortajarena AL
    Biochem Soc Trans; 2015 Oct; 43(5):825-31. PubMed ID: 26517889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembling peptides and proteins for nanotechnological applications.
    Rajagopal K; Schneider JP
    Curr Opin Struct Biol; 2004 Aug; 14(4):480-6. PubMed ID: 15313243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptide and protein building blocks for synthetic biology: from programming biomolecules to self-organized biomolecular systems.
    Bromley EH; Channon K; Moutevelis E; Woolfson DN
    ACS Chem Biol; 2008 Jan; 3(1):38-50. PubMed ID: 18205291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mismeasure of machine: Synthetic biology and the trouble with engineering metaphors.
    Boudry M; Pigliucci M
    Stud Hist Philos Biol Biomed Sci; 2013 Dec; 44(4 Pt B):660-8. PubMed ID: 23790452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological nanofactories facilitate spatially selective capture and manipulation of quorum sensing bacteria in a bioMEMS device.
    Fernandes R; Luo X; Tsao CY; Payne GF; Ghodssi R; Rubloff GW; Bentley WE
    Lab Chip; 2010 May; 10(9):1128-34. PubMed ID: 20390130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and assembly of a chemically switchable and fluorescently traceable light-driven proton pump system for bionanotechnological applications.
    Hirschi S; Fischer N; Kalbermatter D; Laskowski PR; Ucurum Z; Müller DJ; Fotiadis D
    Sci Rep; 2019 Jan; 9(1):1046. PubMed ID: 30705382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein-engineered biomaterials: highly tunable tissue engineering scaffolds.
    Sengupta D; Heilshorn SC
    Tissue Eng Part B Rev; 2010 Jun; 16(3):285-93. PubMed ID: 20141386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano-enabled synthetic biology.
    Doktycz MJ; Simpson ML
    Mol Syst Biol; 2007; 3():125. PubMed ID: 17625513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of cell-free protein synthesis in synthetic biology: Interfacing bio-machinery with synthetic environments.
    Lee KH; Kim DM
    Biotechnol J; 2013 Nov; 8(11):1292-300. PubMed ID: 24123955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A perspective of synthetic biology: assembling building blocks for novel functions.
    Fu P
    Biotechnol J; 2006 Jun; 1(6):690-9. PubMed ID: 16892318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.