These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 27363514)

  • 1. BODIPY catalyzed amide synthesis promoted by BHT and air under visible light.
    Wang XF; Yu SS; Wang C; Xue D; Xiao J
    Org Biomol Chem; 2016 Aug; 14(29):7028-37. PubMed ID: 27363514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amide Bond Formation via Aerobic Photooxidative Coupling of Aldehydes with Amines Catalyzed by a Riboflavin Derivative.
    Hassan Tolba A; Krupička M; Chudoba J; Cibulka R
    Org Lett; 2021 Sep; 23(17):6825-6830. PubMed ID: 34424722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenazinium salt-catalyzed aerobic oxidative amidation of aromatic aldehydes.
    Leow D
    Org Lett; 2014 Nov; 16(21):5812-5. PubMed ID: 25350690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper-catalyzed oxidative amidation of aldehydes with amine salts: synthesis of primary, secondary, and tertiary amides.
    Ghosh SC; Ngiam JS; Seayad AM; Tuan DT; Chai CL; Chen A
    J Org Chem; 2012 Sep; 77(18):8007-15. PubMed ID: 22894712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron-catalyzed oxidative amidation of tertiary amines with aldehydes.
    Li Y; Jia F; Li Z
    Chemistry; 2013 Jan; 19(1):82-6. PubMed ID: 23208956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery and mechanistic studies of a general air-promoted metal-catalyzed aerobic N-alkylation reaction of amides and amines with alcohols.
    Liu C; Liao S; Li Q; Feng S; Sun Q; Yu X; Xu Q
    J Org Chem; 2011 Jul; 76(14):5759-73. PubMed ID: 21657274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manganese Catalyzed Direct Amidation of Esters with Amines.
    Fu Z; Wang X; Tao S; Bu Q; Wei D; Liu N
    J Org Chem; 2021 Feb; 86(3):2339-2358. PubMed ID: 33411529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular-oxygen-promoted Cu-catalyzed oxidative direct amidation of nonactivated carboxylic acids with azoles.
    Ding W; Mai S; Song Q
    Beilstein J Org Chem; 2015; 11():2158-65. PubMed ID: 26664637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhodium-catalyzed oxidative amidation of allylic alcohols and aldehydes: effective conversion of amines and anilines into amides.
    Wu Z; Hull KL
    Chem Sci; 2016 Feb; 7(2):969-975. PubMed ID: 29896367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amide synthesis from alcohols and amines catalyzed by ruthenium N-heterocyclic carbene complexes.
    Dam JH; Osztrovszky G; Nordstrøm LU; Madsen R
    Chemistry; 2010 Jun; 16(23):6820-7. PubMed ID: 20437429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amide bond formation through iron-catalyzed oxidative amidation of tertiary amines with anhydrides.
    Li Y; Ma L; Jia F; Li Z
    J Org Chem; 2013 Jun; 78(11):5638-46. PubMed ID: 23668222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct amide synthesis from either alcohols or aldehydes with amines: activity of Ru(II) hydride and Ru(0) complexes.
    Muthaiah S; Ghosh SC; Jee JE; Chen C; Zhang J; Hong SH
    J Org Chem; 2010 May; 75(9):3002-6. PubMed ID: 20369820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible Light-Driven, One-pot Amide Synthesis Catalyzed by the B
    Tian H; Shimakoshi H; Ono T; Hisaeda Y
    Chempluschem; 2019 Mar; 84(3):237-240. PubMed ID: 31950763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visible-light-mediated decarboxylation/oxidative amidation of α-keto acids with amines under mild reaction conditions using O(2).
    Liu J; Liu Q; Yi H; Qin C; Bai R; Qi X; Lan Y; Lei A
    Angew Chem Int Ed Engl; 2014 Jan; 53(2):502-6. PubMed ID: 24272969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct amidation from alcohols and amines through a tandem oxidation process catalyzed by heterogeneous-polymer-incarcerated gold nanoparticles under aerobic conditions.
    Soulé JF; Miyamura H; Kobayashi S
    Chem Asian J; 2013 Nov; 8(11):2614-26. PubMed ID: 24166844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. α-Carbamoylsulfides as N-Carbamoylimine Precursors in the Visible Light Photoredox-Catalyzed Synthesis of α,α-Disubstituted Amines.
    Lebée C; Languet M; Allain C; Masson G
    Org Lett; 2016 Mar; 18(6):1478-81. PubMed ID: 26950249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition-metal-catalyzed C-N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C-H amination.
    Shin K; Kim H; Chang S
    Acc Chem Res; 2015 Apr; 48(4):1040-52. PubMed ID: 25821998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bodipy derivatives as organic triplet photosensitizers for aerobic photoorganocatalytic oxidative coupling of amines and photooxidation of dihydroxylnaphthalenes.
    Huang L; Zhao J; Guo S; Zhang C; Ma J
    J Org Chem; 2013 Jun; 78(11):5627-37. PubMed ID: 23668289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-pot synthesis of amides
    Jamalifard S; Mokhtari J; Mirjafary Z
    RSC Adv; 2019 Jul; 9(39):22749-22754. PubMed ID: 35519471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterobimetallic lanthanide/sodium phenoxides: efficient catalysts for amidation of aldehydes with amines.
    Li J; Xu F; Zhang Y; Shen Q
    J Org Chem; 2009 Mar; 74(6):2575-7. PubMed ID: 19209872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.