These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 27363522)

  • 1. 'Squeezing' near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion.
    Karalis A; Joannopoulos JD
    Sci Rep; 2016 Jul; 6():28472. PubMed ID: 27363522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transparent and 'opaque' conducting electrodes for ultra-thin highly-efficient near-field thermophotovoltaic cells.
    Karalis A; Joannopoulos JD
    Sci Rep; 2017 Oct; 7(1):14046. PubMed ID: 29070865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-field thermophotovoltaics for efficient heat to electricity conversion at high power density.
    Mittapally R; Lee B; Zhu L; Reihani A; Lim JW; Fan D; Forrest SR; Reddy P; Meyhofer E
    Nat Commun; 2021 Jul; 12(1):4364. PubMed ID: 34272361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadening Near-Field Emission for Performance Enhancement in Thermophotovoltaics.
    Papadakis GT; Buddhiraju S; Zhao Z; Zhao B; Fan S
    Nano Lett; 2020 Mar; 20(3):1654-1661. PubMed ID: 31978305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thin-film 'Thermal Well' Emitters and Absorbers for High-Efficiency Thermophotovoltaics.
    Tong JK; Hsu WC; Huang Y; Boriskina SV; Chen G
    Sci Rep; 2015 Jun; 5():10661. PubMed ID: 26030711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-field thermophotovoltaic energy conversion using an intermediate transparent substrate.
    Inoue T; Watanabe K; Asano T; Noda S
    Opt Express; 2018 Jan; 26(2):A192-A208. PubMed ID: 29401929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems.
    Ilic O; Jablan M; Joannopoulos JD; Celanovic I; Soljacić M
    Opt Express; 2012 May; 20(10):A366-84. PubMed ID: 22712094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A nanophotonic solar thermophotovoltaic device.
    Lenert A; Bierman DM; Nam Y; Chan WR; Celanović I; Soljačić M; Wang EN
    Nat Nanotechnol; 2014 Feb; 9(2):126-30. PubMed ID: 24441985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-Chip Near-Field Thermophotovoltaic Device Integrating a Thin-Film Thermal Emitter and Photovoltaic Cell.
    Inoue T; Koyama T; Kang DD; Ikeda K; Asano T; Noda S
    Nano Lett; 2019 Jun; 19(6):3948-3952. PubMed ID: 31137936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Module-Level Polaritonic Thermophotovoltaic Emitters via Hierarchical Sequential Learning.
    Wang Q; Huang Z; Li J; Huang GY; Wang D; Zhang H; Guo J; Ding M; Chen J; Zhang Z; Rui Z; Shang W; Xu JY; Zhang J; Shiomi J; Fu T; Deng T; Johnson SG; Xu H; Cui K
    Nano Lett; 2023 Feb; 23(4):1144-1151. PubMed ID: 36749930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperbolic metamaterial-based near-field thermophotovoltaic system for hundreds of nanometer vacuum gap.
    Jin S; Lim M; Lee SS; Lee BJ
    Opt Express; 2016 Mar; 24(6):A635-49. PubMed ID: 27136882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hot Carrier-Based Near-Field Thermophotovoltaic Energy Conversion.
    St-Gelais R; Bhatt GR; Zhu L; Fan S; Lipson M
    ACS Nano; 2017 Mar; 11(3):3001-3009. PubMed ID: 28287714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-Field Thermophotovoltaic Conversion with High Electrical Power Density and Cell Efficiency above 14.
    Lucchesi C; Cakiroglu D; Perez JP; Taliercio T; Tournié E; Chapuis PO; Vaillon R
    Nano Lett; 2021 Jun; 21(11):4524-4529. PubMed ID: 34037401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable Narrowband Silicon-Based Thermal Emitter with Excellent High-Temperature Stability Fabricated by Lithography-Free Methods.
    Hou G; Wang Q; Zhu Y; Lu Z; Xu J; Chen K
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Temperature Selective Emitter Design and Materials: Titanium Aluminum Nitride Alloys for Thermophotovoltaics.
    Jeon N; Mandia DJ; Gray SK; Foley JJ; Martinson ABF
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41347-41355. PubMed ID: 31652047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple Rectangular Gratings as a Near-Field "Anti-Reflection" Pattern for GaSb TPV Cells.
    Yu H; Liu D; Yang Z; Duan Y
    Sci Rep; 2017 Apr; 7(1):1026. PubMed ID: 28432306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators.
    Bernardi MP; Dupré O; Blandre E; Chapuis PO; Vaillon R; Francoeur M
    Sci Rep; 2015 Jun; 5():11626. PubMed ID: 26112658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and global optimization of high-efficiency thermophotovoltaic systems.
    Bermel P; Ghebrebrhan M; Chan W; Yeng YX; Araghchini M; Hamam R; Marton CH; Jensen KF; Soljačić M; Joannopoulos JD; Johnson SG; Celanovic I
    Opt Express; 2010 Sep; 18 Suppl 3():A314-34. PubMed ID: 21165063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor.
    Asano T; Suemitsu M; Hashimoto K; De Zoysa M; Shibahara T; Tsutsumi T; Noda S
    Sci Adv; 2016 Dec; 2(12):e1600499. PubMed ID: 28028532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanogap near-field thermophotovoltaics.
    Fiorino A; Zhu L; Thompson D; Mittapally R; Reddy P; Meyhofer E
    Nat Nanotechnol; 2018 Sep; 13(9):806-811. PubMed ID: 29915273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.