BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 2736397)

  • 21. Evidence for opioid and non-opioid forms of stimulation-produced analgesia in the rat.
    Cannon JT; Prieto GJ; Lee A; Liebeskind JC
    Brain Res; 1982 Jul; 243(2):315-21. PubMed ID: 7104742
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Periaqueductal gray inhibition of viscerointercostal and galvanic skin reflexes.
    Sonoda H; Ikenoue K; Yokota T
    Brain Res; 1986 Mar; 369(1-2):91-102. PubMed ID: 3697757
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Opioid mediation of the antiaversive and hyperalgesic actions of bradykinin injected into the dorsal periaqueductal gray of the rat.
    Burdin TA; Graeff FG; Pelá IR
    Physiol Behav; 1992 Sep; 52(3):405-10. PubMed ID: 1409899
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Methysergide and spinal inhibition from electrical stimulation in the periaqueductal grey.
    Foong FW; Terman G; Duggan AW
    Eur J Pharmacol; 1985 Oct; 116(3):239-48. PubMed ID: 4076338
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of mesencephalic morphine analgesia by methysergide in the medial ventral medulla of rats.
    Kiefel JM; Cooper ML; Bodnar RJ
    Physiol Behav; 1992 Jan; 51(1):201-5. PubMed ID: 1311108
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An electrophysiological characterization of the projection from the central nucleus of the amygdala to the periaqueductal gray of the rat: the role of opioid receptors.
    da Costa Gomez TM; Behbehani MM
    Brain Res; 1995 Aug; 689(1):21-31. PubMed ID: 8528703
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Involvement of arcuate nucleus of hypothalamus in the descending pathway from nucleus accumbens to periaqueductal grey subserving an antinociceptive effect.
    Yu LC; Han JS
    Int J Neurosci; 1989 Sep; 48(1-2):71-8. PubMed ID: 2583931
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mapping of jumping, rearing, squealing and switch-off behaviors elicited by periaqueductal gray stimulation in the rat.
    Sandner G; Schmitt P; Karli P
    Physiol Behav; 1987; 39(3):333-9. PubMed ID: 3575473
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Involvement of the periaqueductal gray matter and serotonin in the analgesia produced by stimulation of the nucleus tractus solitarius.
    Lohof AM; Morgan MM; Sohn JH; Liebeskind JC
    Proc West Pharmacol Soc; 1987; 30():267-8. PubMed ID: 3628289
    [No Abstract]   [Full Text] [Related]  

  • 30. An analysis of the 'tolerance' which develops to analgetic electrical stimulation of the midbrain periaqueductal grey in freely moving rats.
    Millan MJ; Członkowski A; Herz A
    Brain Res; 1987 Dec; 435(1-2):97-111. PubMed ID: 3427472
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of PAG in the antinociception evoked from the medial or central amygdala in rats.
    Oliveira MA; Prado WA
    Brain Res Bull; 2001 Jan; 54(1):55-63. PubMed ID: 11226714
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Periaqueductal gray stimulation-induced inhibition of nociceptive dorsal horn neurons in rats is associated with the release of norepinephrine, serotonin, and amino acids.
    Cui M; Feng Y; McAdoo DJ; Willis WD
    J Pharmacol Exp Ther; 1999 May; 289(2):868-76. PubMed ID: 10215665
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antiallodynic effects produced by stimulation of the periaqueductal gray matter in a rat model of neuropathic pain.
    Lee BH; Park SH; Won R; Park YG; Sohn JH
    Neurosci Lett; 2000 Sep; 291(1):29-32. PubMed ID: 10962146
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of methysergide and naloxone on analgesia induced by the peripheral electric stimulation in mice.
    Shimizu T; Koja T; Fujisaki T; Fukuda T
    Brain Res; 1981 Mar; 208(2):463-7. PubMed ID: 6260295
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antinociceptive effects of carbachol microinjected into different portions of the mesencephalic periaqueductal gray matter of the rat.
    Guimarães AP; Prado WA
    Brain Res; 1994 Jun; 647(2):220-30. PubMed ID: 7922498
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Motor or aversive effects associated with analgesic effects induced by electric stimulation of the periaqueductal gray matter in rats].
    Fardin V; Oliveras JL; Besson JM
    C R Seances Acad Sci III; 1981 Mar; 292(9):649-52. PubMed ID: 6786790
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Naloxone injections into the periaqueductal grey area and arcuate nucleus block analgesia in defeated mice.
    Miczek KA; Thompson ML; Shuster L
    Psychopharmacology (Berl); 1985; 87(1):39-42. PubMed ID: 2932763
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diazepam dissociates the analgesic and aversive effects of periaqueductal gray stimulation in the rat.
    Morgan MM; Depaulis A; Liebeskind JC
    Brain Res; 1987 Oct; 423(1-2):395-8. PubMed ID: 3676817
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The relative efficacy of monopolar vs. bipolar electrodes in stimulation-produced analgesia.
    Thorn BE; Applegate L; Jones K
    Exp Brain Res; 1990; 79(2):266-70. PubMed ID: 2323373
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neuroanatomical approaches of the tectum-reticular pathways and immunohistochemical evidence for serotonin-positive perikarya on neuronal substrates of the superior colliculus and periaqueductal gray matter involved in the elaboration of the defensive behavior and fear-induced analgesia.
    Coimbra NC; De Oliveira R; Freitas RL; Ribeiro SJ; Borelli KG; Pacagnella RC; Moreira JE; da Silva LA; Melo LL; Lunardi LO; Brandão ML
    Exp Neurol; 2006 Jan; 197(1):93-112. PubMed ID: 16303128
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.