These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 27364032)
1. Poly(ε-caprolactone)-based substrates bearing pendant small chemical groups as a platform for systemic investigation of chondrogenesis. Chen M; Xu L; Zhou Y; Zhang Y; Lang M; Ye Z; Tan WS Cell Prolif; 2016 Aug; 49(4):512-22. PubMed ID: 27364032 [TBL] [Abstract][Full Text] [Related]
2. In situ ornamenting poly(ε-caprolactone) electrospun fibers with different fiber diameters using chondrocyte-derived extracellular matrix for chondrogenesis of mesenchymal stem cells. Xu J; Fang Q; Liu Y; Zhou Y; Ye Z; Tan WS Colloids Surf B Biointerfaces; 2021 Jan; 197():111374. PubMed ID: 33032177 [TBL] [Abstract][Full Text] [Related]
3. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation. Jonnalagadda JB; Rivero IV; Dertien JS J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317 [TBL] [Abstract][Full Text] [Related]
4. Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering. Liu Y; Tian K; Hao J; Yang T; Geng X; Zhang W J Mater Sci Mater Med; 2019 Apr; 30(5):53. PubMed ID: 31037512 [TBL] [Abstract][Full Text] [Related]
5. Pendant small functional groups on poly(ϵ-caprolactone) substrate modulate adhesion, proliferation and differentiation of human mesenchymal stem cells. Chen M; Zhang Y; Zhou Y; Zhang Y; Lang M; Ye Z; Tan WS Colloids Surf B Biointerfaces; 2015 Oct; 134():322-31. PubMed ID: 26209965 [TBL] [Abstract][Full Text] [Related]
6. Chondrogenesis using mesenchymal stem cells and PCL scaffolds. Kim HJ; Lee JH; Im GI J Biomed Mater Res A; 2010 Feb; 92(2):659-66. PubMed ID: 19235210 [TBL] [Abstract][Full Text] [Related]
7. Extracellular matrix derived by human umbilical cord-deposited mesenchymal stem cells accelerates chondrocyte proliferation and differentiation potential in vitro. Zhang W; Yang J; Zhu Y; Sun X; Guo W; Liu X; Jing X; Guo G; Guo Q; Peng J; Zhu X Cell Tissue Bank; 2019 Sep; 20(3):351-365. PubMed ID: 31218457 [TBL] [Abstract][Full Text] [Related]
8. Investigation of multiphasic 3D-bioplotted scaffolds for site-specific chondrogenic and osteogenic differentiation of human adipose-derived stem cells for osteochondral tissue engineering applications. Mellor LF; Nordberg RC; Huebner P; Mohiti-Asli M; Taylor MA; Efird W; Oxford JT; Spang JT; Shirwaiker RA; Loboa EG J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2017-2030. PubMed ID: 31880408 [TBL] [Abstract][Full Text] [Related]
9. Lithium Chloride-Releasing 3D Printed Scaffold for Enhanced Cartilage Regeneration. Li J; Yao Q; Xu Y; Zhang H; Li LL; Wang L Med Sci Monit; 2019 May; 25():4041-4050. PubMed ID: 31147532 [TBL] [Abstract][Full Text] [Related]
10. PCL-PEG-PCL film promotes cartilage regeneration in vivo. Fu N; Liao J; Lin S; Sun K; Tian T; Zhu B; Lin Y Cell Prolif; 2016 Dec; 49(6):729-739. PubMed ID: 27647680 [TBL] [Abstract][Full Text] [Related]
11. Bioactive polymer/extracellular matrix scaffolds fabricated with a flow perfusion bioreactor for cartilage tissue engineering. Liao J; Guo X; Grande-Allen KJ; Kasper FK; Mikos AG Biomaterials; 2010 Dec; 31(34):8911-20. PubMed ID: 20797784 [TBL] [Abstract][Full Text] [Related]
12. Functional properties of cell-seeded three-dimensionally woven poly(epsilon-caprolactone) scaffolds for cartilage tissue engineering. Moutos FT; Guilak F Tissue Eng Part A; 2010 Apr; 16(4):1291-301. PubMed ID: 19903085 [TBL] [Abstract][Full Text] [Related]
13. Promoted Chondrogenesis of Cocultured Chondrocytes and Mesenchymal Stem Cells under Hypoxia Using In-situ Forming Degradable Hydrogel Scaffolds. Huang X; Hou Y; Zhong L; Huang D; Qian H; Karperien M; Chen W Biomacromolecules; 2018 Jan; 19(1):94-102. PubMed ID: 29211452 [TBL] [Abstract][Full Text] [Related]
14. Cultivation of auricular chondrocytes in poly(ethylene glycol)/poly(ε-caprolactone) hydrogel for tracheal cartilage tissue engineering in a rabbit model. Chang CS; Yang CY; Hsiao HY; Chen L; Chu IM; Cheng MH; Tsao CH Eur Cell Mater; 2018 Jun; 35():350-364. PubMed ID: 29926464 [TBL] [Abstract][Full Text] [Related]
15. [Chondrogenesis of passaged chondrocytes induced by different dynamic loads in bioreactor]. Wang N; Chen J; Zhang G; Chai W Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Jul; 27(7):786-92. PubMed ID: 24063164 [TBL] [Abstract][Full Text] [Related]
16. Chondrogenic phenotype in responses to poly(ɛ-caprolactone) scaffolds catalyzed by bioenzymes: effects of surface topography and chemistry. Kosorn W; Sakulsumbat M; Lertwimol T; Thavornyutikarn B; Uppanan P; Chantaweroad S; Janvikul W J Mater Sci Mater Med; 2019 Nov; 30(12):128. PubMed ID: 31776772 [TBL] [Abstract][Full Text] [Related]
17. Mesenchymal stem cells downregulate articular chondrocyte differentiation in noncontact coculture systems: implications in cartilage tissue regeneration. Xu L; Wang Q; Xu F; Ye Z; Zhou Y; Tan WS Stem Cells Dev; 2013 Jun; 22(11):1657-69. PubMed ID: 23301843 [TBL] [Abstract][Full Text] [Related]
18. A synthetic scaffold favoring chondrogenic phenotype over a natural scaffold. Mohan N; Nair PD Tissue Eng Part A; 2010 Feb; 16(2):373-84. PubMed ID: 19566439 [TBL] [Abstract][Full Text] [Related]
19. Hyaluronic acid facilitates chondrogenesis and matrix deposition of human adipose derived mesenchymal stem cells and human chondrocytes co-cultures. Amann E; Wolff P; Breel E; van Griensven M; Balmayor ER Acta Biomater; 2017 Apr; 52():130-144. PubMed ID: 28131943 [TBL] [Abstract][Full Text] [Related]
20. Direct and indirect co-culture of chondrocytes and mesenchymal stem cells for the generation of polymer/extracellular matrix hybrid constructs. Levorson EJ; Santoro M; Kasper FK; Mikos AG Acta Biomater; 2014 May; 10(5):1824-35. PubMed ID: 24365703 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]