These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 27364190)
1. Computational exploration of the binding mode of heme-dependent stimulators into the active catalytic domain of soluble guanylate cyclase. Agulló L; Buch I; Gutiérrez-de-Terán H; Garcia-Dorado D; Villà-Freixa J Proteins; 2016 Oct; 84(10):1534-48. PubMed ID: 27364190 [TBL] [Abstract][Full Text] [Related]
2. Structure and Activation of Soluble Guanylyl Cyclase, the Nitric Oxide Sensor. Montfort WR; Wales JA; Weichsel A Antioxid Redox Signal; 2017 Jan; 26(3):107-121. PubMed ID: 26979942 [TBL] [Abstract][Full Text] [Related]
3. Dynamic change of heme environment in soluble guanylate cyclase and complexation of NO-independent drug agents with H-NOX domain. Alisaraie L; Fu Y; Tuszynski JA Chem Biol Drug Des; 2013 Mar; 81(3):359-81. PubMed ID: 23095288 [TBL] [Abstract][Full Text] [Related]
4. Synergistic stabilisation of NOsGC by cinaciguat and non-hydrolysable nucleotides: Evidence for sGC activator-induced communication between the heme-binding and catalytic domains. Sömmer A; Behrends S Biochim Biophys Acta Proteins Proteom; 2018; 1866(5-6):702-711. PubMed ID: 29653192 [TBL] [Abstract][Full Text] [Related]
5. Discovery of stimulator binding to a conserved pocket in the heme domain of soluble guanylyl cyclase. Wales JA; Chen CY; Breci L; Weichsel A; Bernier SG; Sheppeck JE; Solinga R; Nakai T; Renhowe PA; Jung J; Montfort WR J Biol Chem; 2018 Feb; 293(5):1850-1864. PubMed ID: 29222330 [TBL] [Abstract][Full Text] [Related]
6. Comparative Studies of the Dynamics Effects of BAY60-2770 and BAY58-2667 Binding with Human and Bacterial H-NOX Domains. Rehan Khalid R; Tahir Ul Qamar M; Maryam A; Ashique A; Anwar F; H Geesi M; Siddiqi AR Molecules; 2018 Aug; 23(9):. PubMed ID: 30149624 [TBL] [Abstract][Full Text] [Related]
7. Activation mechanism of human soluble guanylate cyclase by stimulators and activators. Liu R; Kang Y; Chen L Nat Commun; 2021 Sep; 12(1):5492. PubMed ID: 34535643 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of soluble guanylyl cyclase by small molecules targeting the catalytic domain. Vijayaraghavan J; Kramp K; Harris ME; van den Akker F FEBS Lett; 2016 Oct; 590(20):3669-3680. PubMed ID: 27654641 [TBL] [Abstract][Full Text] [Related]
9. (1)H, (13)C, (15)N backbone and side-chain resonance assignment of Nostoc sp. C139A variant of the heme-nitric oxide/oxygen binding (H-NOX) domain. Alexandropoulos II; Argyriou AI; Marousis KD; Topouzis S; Papapetropoulos A; Spyroulias GA Biomol NMR Assign; 2016 Oct; 10(2):395-400. PubMed ID: 27614467 [TBL] [Abstract][Full Text] [Related]
10. Functional characterization of nitric oxide and YC-1 activation of soluble guanylyl cyclase: structural implication for the YC-1 binding site? Lamothe M; Chang FJ; Balashova N; Shirokov R; Beuve A Biochemistry; 2004 Mar; 43(11):3039-48. PubMed ID: 15023055 [TBL] [Abstract][Full Text] [Related]
11. Expression and characterization of the catalytic domains of soluble guanylate cyclase: interaction with the heme domain. Winger JA; Marletta MA Biochemistry; 2005 Mar; 44(10):4083-90. PubMed ID: 15751985 [TBL] [Abstract][Full Text] [Related]
12. Synergistic mutations in soluble guanylyl cyclase (sGC) reveal a key role for interfacial regions in the sGC activation mechanism. Childers KC; Yao XQ; Giannakoulias S; Amason J; Hamelberg D; Garcin ED J Biol Chem; 2019 Nov; 294(48):18451-18464. PubMed ID: 31645439 [TBL] [Abstract][Full Text] [Related]
14. Incorporation of tyrosine and glutamine residues into the soluble guanylate cyclase heme distal pocket alters NO and O2 binding. Derbyshire ER; Deng S; Marletta MA J Biol Chem; 2010 Jun; 285(23):17471-8. PubMed ID: 20231286 [TBL] [Abstract][Full Text] [Related]
15. Probing the Molecular Mechanism of Human Soluble Guanylate Cyclase Activation by NO in vitro and in vivo. Pan J; Yuan H; Zhang X; Zhang H; Xu Q; Zhou Y; Tan L; Nagawa S; Huang ZX; Tan X Sci Rep; 2017 Feb; 7():43112. PubMed ID: 28230071 [TBL] [Abstract][Full Text] [Related]
16. Binding of YC-1 or BAY 41-2272 to soluble guanylyl cyclase induces a geminate phase in CO photolysis. Hu X; Feng C; Hazzard JT; Tollin G; Montfort WR J Am Chem Soc; 2008 Nov; 130(47):15748-9. PubMed ID: 18980304 [TBL] [Abstract][Full Text] [Related]
17. Binding of YC-1/BAY 41-2272 to soluble guanylate cyclase: A new perspective to the mechanism of activation. Pal B; Kitagawa T Biochem Biophys Res Commun; 2010 Jul; 397(3):375-9. PubMed ID: 20513359 [TBL] [Abstract][Full Text] [Related]
18. Characterization of a Carbon Monoxide-Activated Soluble Guanylate Cyclase from Chlamydomonas reinhardtii. Horst BG; Stewart EM; Nazarian AA; Marletta MA Biochemistry; 2019 Apr; 58(17):2250-2259. PubMed ID: 30946781 [TBL] [Abstract][Full Text] [Related]
19. Mapping of the sGC Stimulator BAY 41-2272 Binding Site on H-NOX Domain and Its Regulation by the Redox State of the Heme. Makrynitsa GI; Argyriou AI; Zompra AA; Salagiannis K; Vazoura V; Papapetropoulos A; Topouzis S; Spyroulias GA Front Cell Dev Biol; 2022; 10():925457. PubMed ID: 35784456 [TBL] [Abstract][Full Text] [Related]
20. Nitric oxide-independent stimulation of soluble guanylate cyclase with BAY 41-2272 in cardiovascular disease. Boerrigter G; Burnett JC Cardiovasc Drug Rev; 2007; 25(1):30-45. PubMed ID: 17445086 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]