These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 27364352)

  • 1. When to eat? The influence of circadian rhythms on metabolic health: are animal studies providing the evidence?
    Moran-Ramos S; Baez-Ruiz A; Buijs RM; Escobar C
    Nutr Res Rev; 2016 Dec; 29(2):180-193. PubMed ID: 27364352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shift-work: is time of eating determining metabolic health? Evidence from animal models.
    Guerrero-Vargas NN; Espitia-Bautista E; Buijs RM; Escobar C
    Proc Nutr Soc; 2018 Aug; 77(3):199-215. PubMed ID: 29307314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circadian Rhythms in Diet-Induced Obesity.
    Engin A
    Adv Exp Med Biol; 2017; 960():19-52. PubMed ID: 28585194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shifting eating to the circadian rest phase misaligns the peripheral clocks with the master SCN clock and leads to a metabolic syndrome.
    Mukherji A; Kobiita A; Damara M; Misra N; Meziane H; Champy MF; Chambon P
    Proc Natl Acad Sci U S A; 2015 Dec; 112(48):E6691-8. PubMed ID: 26627260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural activity in the suprachiasmatic circadian clock of nocturnal mice anticipating a daytime meal.
    Dattolo T; Coomans CP; van Diepen HC; Patton DF; Power S; Antle MC; Meijer JH; Mistlberger RE
    Neuroscience; 2016 Feb; 315():91-103. PubMed ID: 26701294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutrition in the spotlight: metabolic effects of environmental light.
    Versteeg RI; Stenvers DJ; Kalsbeek A; Bisschop PH; Serlie MJ; la Fleur SE
    Proc Nutr Soc; 2016 Nov; 75(4):451-463. PubMed ID: 27499509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian regulation of lipid metabolism.
    Gooley JJ
    Proc Nutr Soc; 2016 Nov; 75(4):440-450. PubMed ID: 27225642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circadian rhythms and different photoresponses of Clock gene transcription in the rat suprachiasmatic nucleus and pineal gland.
    Wang GQ; Fu CL; Li JX; Du YZ; Tong J
    Sheng Li Xue Bao; 2006 Aug; 58(4):359-64. PubMed ID: 16906337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Food-reward signalling in the suprachiasmatic clock.
    Mendoza J; Clesse D; Pévet P; Challet E
    J Neurochem; 2010 Mar; 112(6):1489-99. PubMed ID: 20067576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Food intake during the normal activity phase prevents obesity and circadian desynchrony in a rat model of night work.
    Salgado-Delgado R; Angeles-Castellanos M; Saderi N; Buijs RM; Escobar C
    Endocrinology; 2010 Mar; 151(3):1019-29. PubMed ID: 20080873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chrono-nutrition: From molecular and neuronal mechanisms to human epidemiology and timed feeding patterns.
    Flanagan A; Bechtold DA; Pot GK; Johnston JD
    J Neurochem; 2021 Apr; 157(1):53-72. PubMed ID: 33222161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Internal desynchronization in a model of night-work by forced activity in rats.
    Salgado-Delgado R; Angeles-Castellanos M; Buijs MR; Escobar C
    Neuroscience; 2008 Jun; 154(3):922-31. PubMed ID: 18472343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Food in synchrony with melatonin and corticosterone relieves constant light disturbed metabolism.
    Báez-Ruiz A; Guerrero-Vargas NN; Cázarez-Márquez F; Sabath E; Basualdo MDC; Salgado-Delgado R; Escobar C; Buijs RM
    J Endocrinol; 2017 Dec; 235(3):167-178. PubMed ID: 28851750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Restricted wheel access following a light cycle inversion slows re-entrainment without internal desynchrony as measured in Per2Luc mice.
    Castillo C; Molyneux P; Carlson R; Harrington ME
    Neuroscience; 2011 May; 182():169-76. PubMed ID: 21392557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alterations in circadian and meal-induced gut peptide levels in lean and obese rats.
    Moghadam AA; Moran TH; Dailey MJ
    Exp Biol Med (Maywood); 2017 Dec; 242(18):1786-1794. PubMed ID: 29191090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detrimental effects of constant light exposure and high-fat diet on circadian energy metabolism and insulin sensitivity.
    Coomans CP; van den Berg SA; Houben T; van Klinken JB; van den Berg R; Pronk AC; Havekes LM; Romijn JA; van Dijk KW; Biermasz NR; Meijer JH
    FASEB J; 2013 Apr; 27(4):1721-32. PubMed ID: 23303208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Circadian regulation of sleep-wake cycles and food anticipation].
    Nakamura W
    Brain Nerve; 2012 Jun; 64(6):647-56. PubMed ID: 22647472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gut clock: implication of circadian rhythms in the gastrointestinal tract.
    Konturek PC; Brzozowski T; Konturek SJ
    J Physiol Pharmacol; 2011 Apr; 62(2):139-50. PubMed ID: 21673361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Entrainment of the circadian clock in the liver by feeding.
    Stokkan KA; Yamazaki S; Tei H; Sakaki Y; Menaker M
    Science; 2001 Jan; 291(5503):490-3. PubMed ID: 11161204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The suprachiasmatic nucleus changes the daily activity of the arcuate nucleus α-MSH neurons in male rats.
    Guzmán-Ruiz M; Saderi N; Cazarez-Márquez F; Guerrero-Vargas NN; Basualdo MC; Acosta-Galván G; Buijs RM
    Endocrinology; 2014 Feb; 155(2):525-35. PubMed ID: 24265453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.