BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 27364490)

  • 1. Evaluation of an innovative approach based on prototype engineered wetland to control and manage boron (B) mine effluent pollution.
    Türker OC; Türe C; Böcük H; Yakar A; Chen Y
    Environ Sci Pollut Res Int; 2016 Oct; 23(19):19302-16. PubMed ID: 27364490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The phytoremediation ability of a polyculture constructed wetland to treat boron from mine effluent.
    Türker OC; Böcük H; Yakar A
    J Hazard Mater; 2013 May; 252-253():132-41. PubMed ID: 23500796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constructed wetlands as green tools for management of boron mine wastewater.
    Türker OC; Türe C; Böcük H; Yakar A
    Int J Phytoremediation; 2014; 16(6):537-53. PubMed ID: 24912241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Pb concentration stress on Typha latifolia growth and Pb removal in microcosm wetlands.
    Han J; Chen F; Zhou Y; Wang C
    Water Sci Technol; 2015; 71(11):1734-41. PubMed ID: 26038940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decontamination of coal mine effluent generated at the Rajrappa coal mine using phytoremediation technology.
    Lakra KC; Lal B; Banerjee TK
    Int J Phytoremediation; 2017 Jun; 19(6):530-536. PubMed ID: 27936868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of mercury from gold mine effluents using Limnocharis flava in constructed wetlands.
    Marrugo-Negrete J; Enamorado-Montes G; Durango-Hernández J; Pinedo-Hernández J; Díez S
    Chemosphere; 2017 Jan; 167():188-192. PubMed ID: 27721129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological response of Typha domingensis to an industrial effluent containing heavy metals in a constructed wetland.
    Hadad HR; Mufarrege MM; Pinciroli M; Di Luca GA; Maine MA
    Arch Environ Contam Toxicol; 2010 Apr; 58(3):666-75. PubMed ID: 20041323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitigation of atrazine, S-metolachlor, and diazinon using common emergent aquatic vegetation.
    Moore MT; Locke MA; Kröger R
    J Environ Sci (China); 2017 Jun; 56():114-121. PubMed ID: 28571845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of vegetation (Typha latifolia) on nutrient removal in a horizontal subsurface-flow constructed wetland treating UASB reactor-trickling filter effluent.
    da Costa JF; Martins WL; Seidl M; von Sperling M
    Water Sci Technol; 2015; 71(7):1004-10. PubMed ID: 25860702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoremediation potential of poplar and willow species in small scale constructed wetland for boron removal.
    Yıldırım K; Kasım GÇ
    Chemosphere; 2018 Mar; 194():722-736. PubMed ID: 29247932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural wetlands are efficient at providing long-term metal remediation of freshwater systems polluted by acid mine drainage.
    Dean AP; Lynch S; Rowland P; Toft BD; Pittman JK; White KN
    Environ Sci Technol; 2013; 47(21):12029-36. PubMed ID: 24088022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cost-effectiveness of boron (B) removal from irrigation water: an economic water treatment model (EWTM) for farmers to prevent boron toxicity.
    Türker OC; Yakar A; Türe C; Saz Ç
    Environ Sci Pollut Res Int; 2019 Jun; 26(18):18777-18789. PubMed ID: 31062239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remediation of mercury-polluted soils using artificial wetlands.
    García-Mercadoa HD; Fernándezb G; Garzón-Zúñigac MA; Durán-Domínguez-de-Bazúaa MD
    Int J Phytoremediation; 2017 Jan; 19(1):3-13. PubMed ID: 27484186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of tannery wastewater on the development of different plant species and chromium accumulation in Phragmites australis.
    Calheiros CS; Rangel AO; Castro PM
    Arch Environ Contam Toxicol; 2008 Oct; 55(3):404-14. PubMed ID: 18214580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic wetland treatment of sewage and mine water: pollutant removal performance of the first full-scale system.
    Younger PL; Henderson R
    Water Res; 2014 May; 55():74-82. PubMed ID: 24602862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boron Bioaccumulation by the Dominant Macrophytes Grown in Various Discharge Water Environments.
    Sasmaz M; Senel GU; Obek E
    Bull Environ Contam Toxicol; 2021 Jun; 106(6):1050-1058. PubMed ID: 33835205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural attenuation of arsenic in the wetland system around abandoned mining area.
    An J; Kim JY; Kim KW; Park JY; Lee JS; Jang M
    Environ Geochem Health; 2011 Jan; 33 Suppl 1():71-80. PubMed ID: 21046428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of metal source uncertainty on cost-effective allocation of mine water pollution abatement in catchments.
    Baresel C; Destouni G; Gren IM
    J Environ Manage; 2006 Jan; 78(2):138-48. PubMed ID: 16095805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of two hybrid poplar clones as constructed wetland plant species for treating saline water high in boron and selenium, or waters only high in boron.
    Zhu H; Bañuelos G
    J Hazard Mater; 2017 Jul; 333():319-328. PubMed ID: 28376360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geochemistry of rare earth elements in a passive treatment system built for acid mine drainage remediation.
    Prudêncio MI; Valente T; Marques R; Sequeira Braga MA; Pamplona J
    Chemosphere; 2015 Nov; 138():691-700. PubMed ID: 26247412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.