These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 27365037)

  • 1. Electrochemical biosensors and nanobiosensors.
    Hammond JL; Formisano N; Estrela P; Carrara S; Tkac J
    Essays Biochem; 2016 Jun; 60(1):69-80. PubMed ID: 27365037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review.
    Yang C; Denno ME; Pyakurel P; Venton BJ
    Anal Chim Acta; 2015 Aug; 887():17-37. PubMed ID: 26320782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical sensors based on carbon nanomaterials for acetaminophen detection: A review.
    Cernat A; Tertiş M; Săndulescu R; Bedioui F; Cristea A; Cristea C
    Anal Chim Acta; 2015 Jul; 886():16-28. PubMed ID: 26320632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical biosensing of galactose based on carbon materials: graphene versus multi-walled carbon nanotubes.
    Dalkıran B; Erden PE; Kılıç E
    Anal Bioanal Chem; 2016 Jun; 408(16):4329-39. PubMed ID: 27074783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineered Carbon-Nanomaterial-Based Electrochemical Sensors for Biomolecules.
    Tiwari JN; Vij V; Kemp KC; Kim KS
    ACS Nano; 2016 Jan; 10(1):46-80. PubMed ID: 26579616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-walled carbon nanotube based coating modified with reduced graphene oxide for the design of amperometric biosensors.
    Barkauskas J; Mikoliunaite L; Paklonskaite I; Genys P; Petroniene JJ; Morkvenaite-Vilkonciene I; Ramanaviciene A; Samukaite-Bubniene U; Ramanavicius A
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():515-523. PubMed ID: 30813053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanomaterials and Their Recent Applications in Impedimetric Biosensing.
    Štukovnik Z; Fuchs-Godec R; Bren U
    Biosensors (Basel); 2023 Sep; 13(10):. PubMed ID: 37887092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Applications of Carbon Nanomaterials for microRNA Electrochemical Sensing.
    Wang J; Wen J; Yan H
    Chem Asian J; 2021 Jan; 16(2):114-128. PubMed ID: 33289286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene electrochemistry: fabricating amperometric biosensors.
    Brownson DA; Banks CE
    Analyst; 2011 May; 136(10):2084-9. PubMed ID: 21461417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoelectronic Heterodyne Sensor: A New Electronic Sensing Paradigm.
    Kulkarni GS; Zang W; Zhong Z
    Acc Chem Res; 2016 Nov; 49(11):2578-2586. PubMed ID: 27668314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional Ionic Liquids Decorated Carbon Hybrid Nanomaterials for the Electrochemical Biosensors.
    Ranjan P; Yadav S; Sadique MA; Khan R; Chaurasia JP; Srivastava AK
    Biosensors (Basel); 2021 Oct; 11(11):. PubMed ID: 34821629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon Nanocomposites-based Electrochemical Sensors and Biosensors for Biomedical Diagnostics.
    Kannan P; Maduraiveeran G
    Curr Med Chem; 2024; 31(25):3870-3881. PubMed ID: 37170993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/graphene oxide hybrid biocomposite.
    Palanisamy S; Cheemalapati S; Chen SM
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():207-13. PubMed ID: 24268251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of mediator-free hybrid nano-interfaced electrochemical biosensor for monitoring cancer cell proliferation.
    Madhurantakam S; Jayanth Babu K; Balaguru Rayappan JB; Krishnan UM
    Biosens Bioelectron; 2017 Jan; 87():832-841. PubMed ID: 27657845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of an amperometric bienzyme biosensing system with neutral red functionalized carbon nanotubes.
    Jeykumari DR; Narayanan SS
    Analyst; 2009 Aug; 134(8):1618-22. PubMed ID: 20448929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Sensitive and Selective Graphene Nanoribbon Based Enzymatic Glucose Screen-Printed Electrochemical Sensor.
    Gričar E; Radić J; Genorio B; Kolar M
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36559958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review on recent advancements in electrochemical biosensing using carbonaceous nanomaterials.
    Sanati A; Jalali M; Raeissi K; Karimzadeh F; Kharaziha M; Mahshid SS; Mahshid S
    Mikrochim Acta; 2019 Nov; 186(12):773. PubMed ID: 31720840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon nanomaterial-based electrochemical biosensors for label-free sensing of environmental pollutants.
    Ramnani P; Saucedo NM; Mulchandani A
    Chemosphere; 2016 Jan; 143():85-98. PubMed ID: 25956023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon-based biosensors from graphene family to carbon dots: A viewpoint in cancer detection.
    Safari M; Moghaddam A; Salehi Moghaddam A; Absalan M; Kruppke B; Ruckdäschel H; Khonakdar HA
    Talanta; 2023 Jun; 258():124399. PubMed ID: 36870153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and utilisation of graphene for fabrication of electrochemical sensors.
    Lawal AT
    Talanta; 2015 Jan; 131():424-43. PubMed ID: 25281124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.