These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 27365153)

  • 1. Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function.
    Martin OC; Krzywicki A; Zagorski M
    Phys Life Rev; 2016 Jul; 17():124-58. PubMed ID: 27365153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors.
    Österlund T; Bordel S; Nielsen J
    Integr Biol (Camb); 2015 May; 7(5):560-8. PubMed ID: 25855217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding regulatory networks requires more than computing a multitude of graph statistics: Comment on "Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function" by O.C. Martin et al.
    Tkačik G
    Phys Life Rev; 2016 Jul; 17():166-7. PubMed ID: 27341749
    [No Abstract]   [Full Text] [Related]  

  • 4. Network architectures and operating principles: Reply to comments on "Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function".
    Martin OC; Zagorski M
    Phys Life Rev; 2016 Jul; 17():168-71. PubMed ID: 27365152
    [No Abstract]   [Full Text] [Related]  

  • 5. Integrating transcriptional and protein interaction networks to prioritize condition-specific master regulators.
    Padi M; Quackenbush J
    BMC Syst Biol; 2015 Nov; 9():80. PubMed ID: 26576632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linking network topology to function: Comment on "Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function" by O.C. Martin, A. Krzywicki and M. Zagorski.
    di Bernardo D
    Phys Life Rev; 2016 Jul; 17():159-60. PubMed ID: 27344307
    [No Abstract]   [Full Text] [Related]  

  • 7. Small-scale universality and large-scale diversity: Comment on "Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function" by O.C. Martin, A. Krzywicki, and M. Zagorski.
    Ispolatov Y
    Phys Life Rev; 2016 Jul; 17():163-5. PubMed ID: 27341748
    [No Abstract]   [Full Text] [Related]  

  • 8. Constraints on signaling network logic reveal functional subgraphs on Multiple Myeloma OMIC data.
    Miannay B; Minvielle S; Magrangeas F; Guziolowski C
    BMC Syst Biol; 2018 Mar; 12(Suppl 3):32. PubMed ID: 29589566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network function shapes network structure: the case of the Arabidopsis flower organ specification genetic network.
    Henry A; Monéger F; Samal A; Martin OC
    Mol Biosyst; 2013 Jul; 9(7):1726-35. PubMed ID: 23579205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory patterns in molecular interaction networks.
    Murrugarra D; Laubenbacher R
    J Theor Biol; 2011 Nov; 288():66-72. PubMed ID: 21872607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulating the actual and the possible: Comment on "Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function" by O.C. Martin, A. Krzywicki, and M. Zagorski.
    François P
    Phys Life Rev; 2016 Jul; 17():161-2. PubMed ID: 27344304
    [No Abstract]   [Full Text] [Related]  

  • 12. Transcription factor and microRNA-regulated network motifs for cancer and signal transduction networks.
    Hsieh WT; Tzeng KR; Ciou JS; Tsai JJ; Kurubanjerdjit N; Huang CH; Ng KL
    BMC Syst Biol; 2015; 9 Suppl 1(Suppl 1):S5. PubMed ID: 25707690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motifs emerge from function in model gene regulatory networks.
    Burda Z; Krzywicki A; Martin OC; Zagorski M
    Proc Natl Acad Sci U S A; 2011 Oct; 108(42):17263-8. PubMed ID: 21960444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenotype analysis using network motifs derived from changes in regulatory network dynamics.
    Cavelier G; Anastassiou D
    Proteins; 2005 Aug; 60(3):525-46. PubMed ID: 15971229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying functional gene regulatory network phenotypes underlying single cell transcriptional variability.
    Park J; Ogunnaike B; Schwaber J; Vadigepalli R
    Prog Biophys Mol Biol; 2015 Jan; 117(1):87-98. PubMed ID: 25433230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental selection of the feed-forward loop circuit in gene-regulation networks.
    Dekel E; Mangan S; Alon U
    Phys Biol; 2005 Jun; 2(2):81-8. PubMed ID: 16204860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional master regulator analysis in breast cancer genetic networks.
    Tovar H; García-Herrera R; Espinal-Enríquez J; Hernández-Lemus E
    Comput Biol Chem; 2015 Dec; 59 Pt B():67-77. PubMed ID: 26362298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene regulatory networks in the immune system.
    Singh H; Khan AA; Dinner AR
    Trends Immunol; 2014 May; 35(5):211-8. PubMed ID: 24768519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variable gene expression in eukaryotes: a network perspective.
    Wittkopp PJ
    J Exp Biol; 2007 May; 210(Pt 9):1567-75. PubMed ID: 17449821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RegNetwork: an integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse.
    Liu ZP; Wu C; Miao H; Wu H
    Database (Oxford); 2015; 2015():. PubMed ID: 26424082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.