BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2625 related articles for article (PubMed ID: 27365449)

  • 1. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics.
    Ståhl PL; Salmén F; Vickovic S; Lundmark A; Navarro JF; Magnusson J; Giacomello S; Asp M; Westholm JO; Huss M; Mollbrink A; Linnarsson S; Codeluppi S; Borg Å; Pontén F; Costea PI; Sahlén P; Mulder J; Bergmann O; Lundeberg J; Frisén J
    Science; 2016 Jul; 353(6294):78-82. PubMed ID: 27365449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-definition spatial transcriptomics for in situ tissue profiling.
    Vickovic S; Eraslan G; Salmén F; Klughammer J; Stenbeck L; Schapiro D; Äijö T; Bonneau R; Bergenstråhle L; Navarro JF; Gould J; Griffin GK; Borg Å; Ronaghi M; Frisén J; Lundeberg J; Regev A; Ståhl PL
    Nat Methods; 2019 Oct; 16(10):987-990. PubMed ID: 31501547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly multiplexed subcellular RNA sequencing in situ.
    Lee JH; Daugharthy ER; Scheiman J; Kalhor R; Yang JL; Ferrante TC; Terry R; Jeanty SS; Li C; Amamoto R; Peters DT; Turczyk BM; Marblestone AH; Inverso SA; Bernard A; Mali P; Rios X; Aach J; Church GM
    Science; 2014 Mar; 343(6177):1360-3. PubMed ID: 24578530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA-Seq: revelation of the messengers.
    Van Verk MC; Hickman R; Pieterse CM; Van Wees SC
    Trends Plant Sci; 2013 Apr; 18(4):175-9. PubMed ID: 23481128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues.
    Lee JH; Daugharthy ER; Scheiman J; Kalhor R; Ferrante TC; Terry R; Turczyk BM; Yang JL; Lee HS; Aach J; Zhang K; Church GM
    Nat Protoc; 2015 Mar; 10(3):442-58. PubMed ID: 25675209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomics: advances and approaches.
    Dong Z; Chen Y
    Sci China Life Sci; 2013 Oct; 56(10):960-7. PubMed ID: 24091688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the transcriptome space of a recombinant BHK cell line through next generation sequencing.
    Johnson KC; Yongky A; Vishwanathan N; Jacob NM; Jayapal KP; Goudar CT; Karypis G; Hu WS
    Biotechnol Bioeng; 2014 Apr; 111(4):770-81. PubMed ID: 24249083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ST Spot Detector: a web-based application for automatic spot and tissue detection for spatial Transcriptomics image datasets.
    Wong K; Navarro JF; Bergenstråhle L; Ståhl PL; Lundeberg J
    Bioinformatics; 2018 Jun; 34(11):1966-1968. PubMed ID: 29360929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ST Pipeline: an automated pipeline for spatial mapping of unique transcripts.
    Navarro JF; Sjöstrand J; Salmén F; Lundeberg J; Ståhl PL
    Bioinformatics; 2017 Aug; 33(16):2591-2593. PubMed ID: 28398467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome analysis using RNA-Seq.
    Hoeijmakers WA; Bártfai R; Stunnenberg HG
    Methods Mol Biol; 2013; 923():221-39. PubMed ID: 22990781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tomo-seq: A method to obtain genome-wide expression data with spatial resolution.
    Kruse F; Junker JP; van Oudenaarden A; Bakkers J
    Methods Cell Biol; 2016; 135():299-307. PubMed ID: 27443932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell type-specific gene expression profiling in brain tissue: comparison between TRAP, LCM and RNA-seq.
    Kim T; Lim CS; Kaang BK
    BMB Rep; 2015 Jul; 48(7):388-94. PubMed ID: 25603796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinal transcriptome profiling by directional next-generation sequencing using 100 ng of total RNA.
    Brooks MJ; Rajasimha HK; Swaroop A
    Methods Mol Biol; 2012; 884():319-34. PubMed ID: 22688717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The spatial landscape of gene expression isoforms in tissue sections.
    Lebrigand K; Bergenstråhle J; Thrane K; Mollbrink A; Meletis K; Barbry P; Waldmann R; Lundeberg J
    Nucleic Acids Res; 2023 May; 51(8):e47. PubMed ID: 36928528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VennBLAST—whole transcriptome comparison and visualization tool.
    Zahavi T; Stelzer G; Strauss L; Salmon AY; Salmon-Divon M
    Genomics; 2015 Mar; 105(3):131-6. PubMed ID: 25535680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptomics in cancer diagnostics: developments in technology, clinical research and commercialization.
    Sager M; Yeat NC; Pajaro-Van der Stadt S; Lin C; Ren Q; Lin J
    Expert Rev Mol Diagn; 2015; 15(12):1589-603. PubMed ID: 26565429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Barcoded solid-phase RNA capture for Spatial Transcriptomics profiling in mammalian tissue sections.
    Salmén F; Ståhl PL; Mollbrink A; Navarro JF; Vickovic S; Frisén J; Lundeberg J
    Nat Protoc; 2018 Nov; 13(11):2501-2534. PubMed ID: 30353172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zinc-mediated RNA fragmentation allows robust transcript reassembly upon whole transcriptome RNA-Seq.
    Wery M; Descrimes M; Thermes C; Gautheret D; Morillon A
    Methods; 2013 Sep; 63(1):25-31. PubMed ID: 23523657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overview of available methods for diverse RNA-Seq data analyses.
    Chen G; Wang C; Shi T
    Sci China Life Sci; 2011 Dec; 54(12):1121-8. PubMed ID: 22227904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defining the Human Brain Proteome Using Transcriptomics and Antibody-Based Profiling with a Focus on the Cerebral Cortex.
    Sjöstedt E; Fagerberg L; Hallström BM; Häggmark A; Mitsios N; Nilsson P; Pontén F; Hökfelt T; Uhlén M; Mulder J
    PLoS One; 2015; 10(6):e0130028. PubMed ID: 26076492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 132.