These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 2736574)
1. Effect of neuraminidase on the adherence to salivary pellicle of Streptococcus sanguis and Streptococcus mitis. Liljemark WF; Bloomquist CG; Fenner LJ; Antonelli PJ; Coulter MC Caries Res; 1989; 23(3):141-5. PubMed ID: 2736574 [TBL] [Abstract][Full Text] [Related]
2. Experimental salivary pellicles formed on titanium surfaces mediate adhesion of streptococci. Edgerton M; Lo SE; Scannapieco FA Int J Oral Maxillofac Implants; 1996; 11(4):443-9. PubMed ID: 8803339 [TBL] [Abstract][Full Text] [Related]
3. Contribution of stereochemical interactions in the adhesion of Streptococcus sanguis C5 to experimental pellicles. Gibbons RJ; Etherden I; Moreno EC J Dent Res; 1985 Feb; 64(2):96-101. PubMed ID: 2982936 [TBL] [Abstract][Full Text] [Related]
4. Association of neuraminidase-sensitive receptors and putative hydrophobic interactions with high-affinity binding sites for Streptococcus sanguis C5 in salivary pellicles. Gibbons RJ; Etherden I; Moreno EC Infect Immun; 1983 Dec; 42(3):1006-12. PubMed ID: 6642656 [TBL] [Abstract][Full Text] [Related]
5. [Effect of neuraminidase on the adherence of S. mutans to salivary pellicle]. Fan MW Zhonghua Kou Qiang Yi Xue Za Zhi; 1993 Jul; 28(4):209-11, 254. PubMed ID: 8174403 [TBL] [Abstract][Full Text] [Related]
6. Cumulative correlations of lysozyme, lactoferrin, peroxidase, S-IgA, amylase, and total protein concentrations with adherence of oral viridans streptococci to microplates coated with human saliva. Rudney JD; Hickey KL; Ji Z J Dent Res; 1999 Mar; 78(3):759-68. PubMed ID: 10096451 [TBL] [Abstract][Full Text] [Related]
7. Saliva mediated adherence, aggregation and prevalence in dental plaque of Streptococcus mutans, Streptococcus sanguis and Actinomyces spp, in young and elderly humans. Carlén A; Olsson J; Ramberg P Arch Oral Biol; 1996 Dec; 41(12):1133-40. PubMed ID: 9134102 [TBL] [Abstract][Full Text] [Related]
8. The effects of pellicle formation on streptococcal adhesion to human enamel and artificial substrata with various surface free-energies. Pratt-Terpstra IH; Weerkamp AH; Busscher HJ J Dent Res; 1989 Mar; 68(3):463-7. PubMed ID: 2921388 [TBL] [Abstract][Full Text] [Related]
9. Cohesion between oral streptococci and Neisseria pharyngis on saliva-coated glass, in the presence and absence of sucrose. Willcox MD; Drucker DB; Hillier VF Microbios; 1990; 61(248-249):197-205. PubMed ID: 2329945 [TBL] [Abstract][Full Text] [Related]
10. Adherence of Streptococcus sanguis to saliva-coated hydroxyapatite: evidence for two binding sites. Morris EJ; McBride BC Infect Immun; 1984 Feb; 43(2):656-63. PubMed ID: 6319287 [TBL] [Abstract][Full Text] [Related]
11. Kinetic analysis of Streptococcus sanguis adhesion to artificial pellicle. Cowan MM; Taylor KG; Doyle RJ J Dent Res; 1986 Oct; 65(10):1278-83. PubMed ID: 3020104 [TBL] [Abstract][Full Text] [Related]
12. Role of sialic acid in the kinetics of Streptococcus sanguis adhesion to artificial pellicle. Cowan MM; Taylor KG; Doyle RJ Infect Immun; 1987 Jul; 55(7):1552-7. PubMed ID: 3596799 [TBL] [Abstract][Full Text] [Related]
13. Characteristic differences between saliva-dependent aggregation and adhesion of streptococci. Rosan B; Malamud D; Appelbaum B; Golub E Infect Immun; 1982 Jan; 35(1):86-90. PubMed ID: 6274804 [TBL] [Abstract][Full Text] [Related]
14. In vitro inhibition of oral streptococci binding to the acquired pellicle by algal lectins. Teixeira EH; Napimoga MH; Carneiro VA; de Oliveira TM; Nascimento KS; Nagano CS; Souza JB; Havt A; Pinto VP; Gonçalves RB; Farias WR; Saker-Sampaio S; Sampaio AH; Cavada BS J Appl Microbiol; 2007 Oct; 103(4):1001-6. PubMed ID: 17897204 [TBL] [Abstract][Full Text] [Related]
15. Enzymatic modification of bacterial receptors on saliva-treated hydroxyapatite surfaces. Gibbons RJ; Etherden I Infect Immun; 1982 Apr; 36(1):52-8. PubMed ID: 6281193 [TBL] [Abstract][Full Text] [Related]
16. Stress as a determinant of saliva-mediated adherence and coadherence of oral and nonoral microorganisms. Bosch JA; Turkenburg M; Nazmi K; Veerman EC; de Geus EJ; Nieuw Amerongen AV Psychosom Med; 2003; 65(4):604-12. PubMed ID: 12883111 [TBL] [Abstract][Full Text] [Related]
17. Effect of sodium and amine fluoride treatment on adsorption and ultrastructure of S. mutans and S. sanguis. Meurman JH Scand J Dent Res; 1987 Oct; 95(5):389-96. PubMed ID: 2821611 [TBL] [Abstract][Full Text] [Related]
18. Lysozyme and lactoperoxidase inhibit the adherence of Streptococcus mutans NCTC 10449 (serotype c) to saliva-treated hydroxyapatite in vitro. Roger V; Tenovuo J; Lenander-Lumikari M; Söderling E; Vilja P Caries Res; 1994; 28(6):421-8. PubMed ID: 7850845 [TBL] [Abstract][Full Text] [Related]
19. Roles of salivary proteins in the adherence of oral streptococci to various orthodontic brackets. Ahn SJ; Kho HS; Lee SW; Nahm DS J Dent Res; 2002 Jun; 81(6):411-5. PubMed ID: 12097434 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of adsorption of oral streptococci to saliva treated hydroxyapatite by chitin derivatives. Sano H; Matsukubo T; Shibasaki K; Itoi H; Takaesu Y Bull Tokyo Dent Coll; 1991 Feb; 32(1):9-17. PubMed ID: 1668072 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]