BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 2736574)

  • 1. Effect of neuraminidase on the adherence to salivary pellicle of Streptococcus sanguis and Streptococcus mitis.
    Liljemark WF; Bloomquist CG; Fenner LJ; Antonelli PJ; Coulter MC
    Caries Res; 1989; 23(3):141-5. PubMed ID: 2736574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental salivary pellicles formed on titanium surfaces mediate adhesion of streptococci.
    Edgerton M; Lo SE; Scannapieco FA
    Int J Oral Maxillofac Implants; 1996; 11(4):443-9. PubMed ID: 8803339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of stereochemical interactions in the adhesion of Streptococcus sanguis C5 to experimental pellicles.
    Gibbons RJ; Etherden I; Moreno EC
    J Dent Res; 1985 Feb; 64(2):96-101. PubMed ID: 2982936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Association of neuraminidase-sensitive receptors and putative hydrophobic interactions with high-affinity binding sites for Streptococcus sanguis C5 in salivary pellicles.
    Gibbons RJ; Etherden I; Moreno EC
    Infect Immun; 1983 Dec; 42(3):1006-12. PubMed ID: 6642656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of neuraminidase on the adherence of S. mutans to salivary pellicle].
    Fan MW
    Zhonghua Kou Qiang Yi Xue Za Zhi; 1993 Jul; 28(4):209-11, 254. PubMed ID: 8174403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cumulative correlations of lysozyme, lactoferrin, peroxidase, S-IgA, amylase, and total protein concentrations with adherence of oral viridans streptococci to microplates coated with human saliva.
    Rudney JD; Hickey KL; Ji Z
    J Dent Res; 1999 Mar; 78(3):759-68. PubMed ID: 10096451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saliva mediated adherence, aggregation and prevalence in dental plaque of Streptococcus mutans, Streptococcus sanguis and Actinomyces spp, in young and elderly humans.
    Carlén A; Olsson J; Ramberg P
    Arch Oral Biol; 1996 Dec; 41(12):1133-40. PubMed ID: 9134102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of pellicle formation on streptococcal adhesion to human enamel and artificial substrata with various surface free-energies.
    Pratt-Terpstra IH; Weerkamp AH; Busscher HJ
    J Dent Res; 1989 Mar; 68(3):463-7. PubMed ID: 2921388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cohesion between oral streptococci and Neisseria pharyngis on saliva-coated glass, in the presence and absence of sucrose.
    Willcox MD; Drucker DB; Hillier VF
    Microbios; 1990; 61(248-249):197-205. PubMed ID: 2329945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adherence of Streptococcus sanguis to saliva-coated hydroxyapatite: evidence for two binding sites.
    Morris EJ; McBride BC
    Infect Immun; 1984 Feb; 43(2):656-63. PubMed ID: 6319287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic analysis of Streptococcus sanguis adhesion to artificial pellicle.
    Cowan MM; Taylor KG; Doyle RJ
    J Dent Res; 1986 Oct; 65(10):1278-83. PubMed ID: 3020104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of sialic acid in the kinetics of Streptococcus sanguis adhesion to artificial pellicle.
    Cowan MM; Taylor KG; Doyle RJ
    Infect Immun; 1987 Jul; 55(7):1552-7. PubMed ID: 3596799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristic differences between saliva-dependent aggregation and adhesion of streptococci.
    Rosan B; Malamud D; Appelbaum B; Golub E
    Infect Immun; 1982 Jan; 35(1):86-90. PubMed ID: 6274804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro inhibition of oral streptococci binding to the acquired pellicle by algal lectins.
    Teixeira EH; Napimoga MH; Carneiro VA; de Oliveira TM; Nascimento KS; Nagano CS; Souza JB; Havt A; Pinto VP; Gonçalves RB; Farias WR; Saker-Sampaio S; Sampaio AH; Cavada BS
    J Appl Microbiol; 2007 Oct; 103(4):1001-6. PubMed ID: 17897204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic modification of bacterial receptors on saliva-treated hydroxyapatite surfaces.
    Gibbons RJ; Etherden I
    Infect Immun; 1982 Apr; 36(1):52-8. PubMed ID: 6281193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress as a determinant of saliva-mediated adherence and coadherence of oral and nonoral microorganisms.
    Bosch JA; Turkenburg M; Nazmi K; Veerman EC; de Geus EJ; Nieuw Amerongen AV
    Psychosom Med; 2003; 65(4):604-12. PubMed ID: 12883111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of sodium and amine fluoride treatment on adsorption and ultrastructure of S. mutans and S. sanguis.
    Meurman JH
    Scand J Dent Res; 1987 Oct; 95(5):389-96. PubMed ID: 2821611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lysozyme and lactoperoxidase inhibit the adherence of Streptococcus mutans NCTC 10449 (serotype c) to saliva-treated hydroxyapatite in vitro.
    Roger V; Tenovuo J; Lenander-Lumikari M; Söderling E; Vilja P
    Caries Res; 1994; 28(6):421-8. PubMed ID: 7850845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of salivary proteins in the adherence of oral streptococci to various orthodontic brackets.
    Ahn SJ; Kho HS; Lee SW; Nahm DS
    J Dent Res; 2002 Jun; 81(6):411-5. PubMed ID: 12097434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of adsorption of oral streptococci to saliva treated hydroxyapatite by chitin derivatives.
    Sano H; Matsukubo T; Shibasaki K; Itoi H; Takaesu Y
    Bull Tokyo Dent Coll; 1991 Feb; 32(1):9-17. PubMed ID: 1668072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.