These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 27366199)

  • 1. Evolution of body morphology and beak shape revealed by a morphometric analysis of 14 Paridae species.
    Shao S; Quan Q; Cai T; Song G; Qu Y; Lei F
    Front Zool; 2016; 13():30. PubMed ID: 27366199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological diversity and altitudinal differentiation of
    Lu W; Shao S; Zu L; Luo X; Duan Y
    Ecol Evol; 2023 Sep; 13(9):e10473. PubMed ID: 37664511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A complete multilocus species phylogeny of the tits and chickadees (Aves: Paridae).
    Johansson US; Ekman J; Bowie RC; Halvarsson P; Ohlson JI; Price TD; Ericson PG
    Mol Phylogenet Evol; 2013 Dec; 69(3):852-60. PubMed ID: 23831453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of beak morphology in the Ground Tit revealed by comparative transcriptomics.
    Cheng Y; Gao B; Wang H; Han N; Shao S; Wu S; Song G; Zhang YE; Zhu X; Lu X; Qu Y; Lei F
    Front Zool; 2017; 14():58. PubMed ID: 29299037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of a multifunctional trait: shared effects of foraging ecology and thermoregulation on beak morphology, with consequences for song evolution.
    Friedman NR; Miller ET; Ball JR; Kasuga H; Remeš V; Economo EP
    Proc Biol Sci; 2019 Dec; 286(1917):20192474. PubMed ID: 31847778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometric morphometrics casts light on phylogenetic relevance of cephalopod beak morphological.
    Wang C; Chen X; Fang Z
    J Morphol; 2024 Apr; 285(4):e21691. PubMed ID: 38555512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Genomics Reveals Evolution of a Beak Morphology Locus in a High-Altitude Songbird.
    Cheng Y; Miller MJ; Zhang D; Song G; Jia C; Qu Y; Lei F
    Mol Biol Evol; 2020 Oct; 37(10):2983-2988. PubMed ID: 32592485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Egg recognition abilities of tit species in the Paridae family: do Indomalayan tits exhibit higher recognition than Palearctic tits?
    Liu JP; Zhang L; Zhang L; Yang CC; Yao CT; Lu X; Møller AP; Wan DM; Liang W
    Zool Res; 2020 Nov; 41(6):726-733. PubMed ID: 32918406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A geometric morphometric appraisal of beak shape in Darwin's finches.
    Foster DJ; Podos J; Hendry AP
    J Evol Biol; 2008 Jan; 21(1):263-275. PubMed ID: 18021202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bill shape variation in selected species in birds of prey.
    Çakar B; Bulut EÇ; Kahvecioglu O; Günay E; Ruzhanova-Gospodinova IS; Szara T
    Anat Histol Embryol; 2024 Jul; 53(4):e13085. PubMed ID: 38965917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monogenean anchor morphometry: systematic value, phylogenetic signal, and evolution.
    Khang TF; Soo OY; Tan WB; Lim LH
    PeerJ; 2016; 4():e1668. PubMed ID: 26966649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The evolutionary relationship among beak shape, mechanical advantage, and feeding ecology in modern birds.
    Navalón G; Bright JA; Marugán-Lobón J; Rayfield EJ
    Evolution; 2019 Mar; 73(3):422-435. PubMed ID: 30537045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smaller beaks for colder winters: Thermoregulation drives beak size evolution in Australasian songbirds.
    Friedman NR; Harmáčková L; Economo EP; Remeš V
    Evolution; 2017 Aug; 71(8):2120-2129. PubMed ID: 28700095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The multifactorial nature of beak and skull shape evolution in parrots and cockatoos (Psittaciformes).
    Bright JA; Marugán-Lobón J; Rayfield EJ; Cobb SN
    BMC Evol Biol; 2019 May; 19(1):104. PubMed ID: 31101003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The calmodulin pathway and evolution of elongated beak morphology in Darwin's finches.
    Abzhanov A; Kuo WP; Hartmann C; Grant BR; Grant PR; Tabin CJ
    Nature; 2006 Aug; 442(7102):563-7. PubMed ID: 16885984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan plateau.
    Qu Y; Zhao H; Han N; Zhou G; Song G; Gao B; Tian S; Zhang J; Zhang R; Meng X; Zhang Y; Zhang Y; Zhu X; Wang W; Lambert D; Ericson PG; Subramanian S; Yeung C; Zhu H; Jiang Z; Li R; Lei F
    Nat Commun; 2013; 4():2071. PubMed ID: 23817352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ecological adaptation and species recognition drives vocal evolution in neotropical suboscine birds.
    Seddon N
    Evolution; 2005 Jan; 59(1):200-15. PubMed ID: 15792239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why the long beak? Phylogeny, convergence, feeding ecology, and evolutionary allometry shaped the skull of the Giant Cowbird Molothrus oryzivorus (Icteridae).
    Gómez RO; Lois-Milevicich J
    J Morphol; 2021 Nov; 282(11):1587-1603. PubMed ID: 34369611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beaks promote rapid morphological diversification along distinct evolutionary trajectories in labrid fishes (Eupercaria: Labridae).
    Evans KM; Larouche O; Gartner SM; Faucher RE; Dee SG; Westneat MW
    Evolution; 2023 Sep; 77(9):2000-2014. PubMed ID: 37345732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative phylogeography of two endemic birds of the Tibetan plateau, the white-rumped snow finch (Onychostruthus taczanowskii) and the Hume's ground tit (Pseudopodoces humilis).
    Qu Y; Lei F
    Mol Phylogenet Evol; 2009 May; 51(2):312-26. PubMed ID: 19405199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.