These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 27366199)

  • 21. Comparative phylogeography of two endemic birds of the Tibetan plateau, the white-rumped snow finch (Onychostruthus taczanowskii) and the Hume's ground tit (Pseudopodoces humilis).
    Qu Y; Lei F
    Mol Phylogenet Evol; 2009 May; 51(2):312-26. PubMed ID: 19405199
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Allometry and integration do not strongly constrain beak shape evolution in large-billed (
    Yamasaki T; Aoki S; Tokita M
    Ecol Evol; 2018 Oct; 8(20):10057-10066. PubMed ID: 30397447
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Encephalization and diversification of the cranial base in platyrrhine primates.
    Aristide L; Dos Reis SF; Machado AC; Lima I; Lopes RT; Perez SI
    J Hum Evol; 2015 Apr; 81():29-40. PubMed ID: 25743433
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative morphology and soft tissue histology of the remote-touch bill-tip organ in three ibis species of differing foraging ecology.
    du Toit CJ; Chinsamy A; Cunningham SJ
    J Anat; 2022 Oct; 241(4):966-980. PubMed ID: 35938671
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The shapes of bird beaks are highly controlled by nondietary factors.
    Bright JA; Marugán-Lobón J; Cobb SN; Rayfield EJ
    Proc Natl Acad Sci U S A; 2016 May; 113(19):5352-7. PubMed ID: 27125856
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Beak shape and nest material use in birds.
    Sheard C; Street SE; Evans C; Lala KN; Healy SD; Sugasawa S
    Philos Trans R Soc Lond B Biol Sci; 2023 Aug; 378(1884):20220147. PubMed ID: 37427471
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Correlated evolution of beak morphology and song in the neotropical woodcreeper radiation.
    Derryberry EP; Seddon N; Claramunt S; Tobias JA; Baker A; Aleixo A; Brumfield RT
    Evolution; 2012 Sep; 66(9):2784-97. PubMed ID: 22946803
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An analysis of beak shape variation in two ages of domestic turkeys (Meleagris gallopavo) using landmark-based geometric morphometrics.
    Dalton HA; Wood BJ; Widowski TM; Guerin MT; Torrey S
    PLoS One; 2017; 12(9):e0185159. PubMed ID: 28934330
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Positive selection and convergent evolution shape molecular phenotypic traits of innate immunity receptors in tits (Paridae).
    Těšický M; Velová H; Novotný M; Kreisinger J; Beneš V; Vinkler M
    Mol Ecol; 2020 Aug; 29(16):3056-3070. PubMed ID: 32652716
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of phylogeny and ecology in shaping morphology in 21 genera and 127 species of Australo-Papuan myobatrachid frogs.
    Vidal-García M; Byrne PG; Roberts JD; Keogh JS
    J Evol Biol; 2014 Jan; 27(1):181-92. PubMed ID: 24329775
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shared ecological traits influence shape of the skeleton in flatfishes (Pleuronectiformes).
    Black CR; Berendzen PB
    PeerJ; 2020; 8():e8919. PubMed ID: 32280569
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determining the variation in premaxillary and dentary bone morphology that may underlie beak shape between two pure layer lines.
    Struthers S; Andersson B; Schmutz M; McCormack HA; Wilson PW; Dunn IC; Sandilands V; Schoenebeck JJ
    Poult Sci; 2021 Dec; 100(12):101500. PubMed ID: 34700097
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pelvic shape variation among gorilla subspecies: Phylogenetic and ecological signals.
    Fatica LM; Almécija S; McFarlin SC; Hammond AS
    J Hum Evol; 2019 Dec; 137():102684. PubMed ID: 31669913
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phylogenetic conservatism in skulls and evolutionary lability in limbs - morphological evolution across an ancient frog radiation is shaped by diet, locomotion and burrowing.
    Vidal-García M; Scott Keogh J
    BMC Evol Biol; 2017 Jul; 17(1):165. PubMed ID: 28693418
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The adaptive genomic landscape of beak morphology in Darwin's finches.
    Lawson LP; Petren K
    Mol Ecol; 2017 Oct; 26(19):4978-4989. PubMed ID: 28475225
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Geometric morphometric analyses provide evidence for the adaptive character of the Tanganyikan cichlid fish radiations.
    Clabaut C; Bunje PM; Salzburger W; Meyer A
    Evolution; 2007 Mar; 61(3):560-78. PubMed ID: 17348920
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Different foraging preferences of hummingbirds on artificial and natural flowers reveal mechanisms structuring plant-pollinator interactions.
    Maglianesi MA; Böhning-Gaese K; Schleuning M
    J Anim Ecol; 2015 May; 84(3):655-664. PubMed ID: 25400277
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome sequence of ground tit Pseudopodoces humilis and its adaptation to high altitude.
    Cai Q; Qian X; Lang Y; Luo Y; Xu J; Pan S; Hui Y; Gou C; Cai Y; Hao M; Zhao J; Wang S; Wang Z; Zhang X; He R; Liu J; Luo L; Li Y; Wang J
    Genome Biol; 2013 Mar; 14(3):R29. PubMed ID: 23537097
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Variation in guenon skulls (I): species divergence, ecological and genetic differences.
    Cardini A; Elton S
    J Hum Evol; 2008 May; 54(5):615-37. PubMed ID: 18191179
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Niche-trait relationships at individual and population level in three co-occurring passerine species.
    Shaner PL; Chen YK; Hsu YC
    Ecol Evol; 2021 Jun; 11(12):7378-7389. PubMed ID: 34188820
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.