These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 27366591)
1. A Novel Nude Mouse Model of Hypertrophic Scarring Using Scratched Full Thickness Human Skin Grafts. Alrobaiea SM; Ding J; Ma Z; Tredget EE Adv Wound Care (New Rochelle); 2016 Jul; 5(7):299-313. PubMed ID: 27366591 [No Abstract] [Full Text] [Related]
2. The natural behavior of mononuclear phagocytes in HTS formation. Zhu Z; Ding J; Ma Z; Iwashina T; Tredget EE Wound Repair Regen; 2016; 24(1):14-25. PubMed ID: 26519112 [TBL] [Abstract][Full Text] [Related]
3. Novel methods for the investigation of human hypertrophic scarring and other dermal fibrosis. Honardoust D; Kwan P; Momtazi M; Ding J; Tredget EE Methods Mol Biol; 2013; 1037():203-31. PubMed ID: 24029937 [TBL] [Abstract][Full Text] [Related]
4. Human hypertrophic scar-like nude mouse model: characterization of the molecular and cellular biology of the scar process. Wang J; Ding J; Jiao H; Honardoust D; Momtazi M; Shankowsky HA; Tredget EE Wound Repair Regen; 2011; 19(2):274-85. PubMed ID: 21362096 [TBL] [Abstract][Full Text] [Related]
5. A nude mouse model of hypertrophic scar shows morphologic and histologic characteristics of human hypertrophic scar. Momtazi M; Kwan P; Ding J; Anderson CC; Honardoust D; Goekjian S; Tredget EE Wound Repair Regen; 2013; 21(1):77-87. PubMed ID: 23126488 [TBL] [Abstract][Full Text] [Related]
6. Establishment of a hypertrophic scar model by transplanting full-thickness human skin grafts onto the backs of nude mice. Yang DY; Li SR; Wu JL; Chen YQ; Li G; Bi S; Dai X Plast Reconstr Surg; 2007 Jan; 119(1):104-109. PubMed ID: 17255662 [TBL] [Abstract][Full Text] [Related]
7. The therapeutic potential of a C-X-C chemokine receptor type 4 (CXCR-4) antagonist on hypertrophic scarring in vivo. Ding J; Ma Z; Liu H; Kwan P; Iwashina T; Shankowsky HA; Wong D; Tredget EE Wound Repair Regen; 2014; 22(5):622-30. PubMed ID: 25139227 [TBL] [Abstract][Full Text] [Related]
8. Transplanting Human Skin Grafts onto Nude Mice to Model Skin Scars. Ding J; Tredget EE Methods Mol Biol; 2017; 1627():65-80. PubMed ID: 28836195 [TBL] [Abstract][Full Text] [Related]
9. Scarring occurs at a critical depth of skin injury: precise measurement in a graduated dermal scratch in human volunteers. Dunkin CSJ; Pleat JM; Gillespie PH; Tyler MPH; Roberts AHN; McGrouther DA Plast Reconstr Surg; 2007 May; 119(6):1722-1732. PubMed ID: 17440346 [TBL] [Abstract][Full Text] [Related]
10. Systemic depletion of macrophages in the subacute phase of wound healing reduces hypertrophic scar formation. Zhu Z; Ding J; Ma Z; Iwashina T; Tredget EE Wound Repair Regen; 2016 Jul; 24(4):644-56. PubMed ID: 27169512 [TBL] [Abstract][Full Text] [Related]
11. Autologous adipose-derived regenerative cell therapy modulates development of hypertrophic scarring in a red Duroc porcine model. Foubert P; Zafra D; Liu M; Rajoria R; Gutierrez D; Tenenhaus M; Fraser JK Stem Cell Res Ther; 2017 Nov; 8(1):261. PubMed ID: 29141687 [TBL] [Abstract][Full Text] [Related]
12. Morphologic and Histologic Comparison of Hypertrophic Scar in Nude Mice, T-Cell Receptor, and Recombination Activating Gene Knockout Mice. Momtazi M; Ding J; Kwan P; Anderson CC; Honardoust D; Goekjian S; Tredget EE Plast Reconstr Surg; 2015 Dec; 136(6):1192-1204. PubMed ID: 26595016 [TBL] [Abstract][Full Text] [Related]
13. Fluorescent light energy modulates healing in skin grafted mouse model. Ding J; Mellergaard M; Zhu Z; Kwan P; Edge D; Ma Z; Hebert L; Alrobaiea S; Iwasaki T; Nielsen MCE; Tredget EE Open Med (Wars); 2021; 16(1):1240-1255. PubMed ID: 34522783 [TBL] [Abstract][Full Text] [Related]
14. [Wound healing is still a game of " blind men and an elephant"]. Han CM Zhonghua Shao Shang Za Zhi; 2016 Oct; 32(10):580-581. PubMed ID: 27765087 [TBL] [Abstract][Full Text] [Related]
15. Flightless I is a key regulator of the fibroproliferative process in hypertrophic scarring and a target for a novel antiscarring therapy. Cameron AM; Turner CT; Adams DH; Jackson JE; Melville E; Arkell RM; Anderson PJ; Cowin AJ Br J Dermatol; 2016 Apr; 174(4):786-94. PubMed ID: 26521845 [TBL] [Abstract][Full Text] [Related]
16. A highly simulated scar model developed by grafting human thin split-thickness skin on back of nude mouse: The remodeling process, histological characteristics of scars. Li Z; Li S; Li K; Jiang X; Zhang J; Liu H Biochem Biophys Res Commun; 2020 Jun; 526(3):744-750. PubMed ID: 32265030 [TBL] [Abstract][Full Text] [Related]
17. [Effects of porcine acellular dermal matrix combined with human epidermal stem cells on wound healing of full-thickness skin defect in nude mice]. Zhao XH; Guo YC; Chen HH; Li X; Wang Y; Ni WW; Xing MQ; Zhang R; Yu SC; Pan YG; Zhan RX; Luo GX Zhonghua Shao Shang Yu Chuang Mian Xiu Fu Za Zhi; 2022 Jan; 38(1):45-56. PubMed ID: 34839596 [No Abstract] [Full Text] [Related]
18. Molecular Features of Hypertrophic Scars After Thermal Injury: Is There a Biologic Basis for Laser Therapy? Schaffrick L; Ding J; Kwan P; Tredget EE Adv Wound Care (New Rochelle); 2022 Apr; 11(4):163-178. PubMed ID: 34663086 [No Abstract] [Full Text] [Related]
19. Efficacy of hydrosurgical excision combined with skin grafting in the treatment of deep partial-thickness and full-thickness burns: A two-year retrospective study. Cao YL; Liu ZC; Chen XL Burns; 2023 Aug; 49(5):1087-1095. PubMed ID: 35941025 [TBL] [Abstract][Full Text] [Related]