BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

929 related articles for article (PubMed ID: 27366893)

  • 41. Chimeric DNA-RNA Guide RNA Designs.
    Lu S; Zhang Y; Yin H
    Methods Mol Biol; 2021; 2162():79-85. PubMed ID: 32926379
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multiple sgRNAs with overlapping sequences enhance CRISPR/Cas9-mediated knock-in efficiency.
    Jang DE; Lee JY; Lee JH; Koo OJ; Bae HS; Jung MH; Bae JH; Hwang WS; Chang YJ; Lee YH; Lee HW; Yeom SC
    Exp Mol Med; 2018 Apr; 50(4):1-9. PubMed ID: 29622782
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bacterial Genome Editing with CRISPR-Cas9: Taking Clostridium beijerinckii as an Example.
    Zhang ZT; Jiménez-Bonilla P; Seo SO; Lu T; Jin YS; Blaschek HP; Wang Y
    Methods Mol Biol; 2018; 1772():297-325. PubMed ID: 29754236
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Targeted Genome Editing Using DNA-Free RNA-Guided Cas9 Ribonucleoprotein for CHO Cell Engineering.
    Shin J; Lee N; Cho S; Cho BK
    Methods Mol Biol; 2018; 1772():151-169. PubMed ID: 29754227
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Application and optimization of CRISPR-Cas9-mediated genome engineering in axolotl (Ambystoma mexicanum).
    Fei JF; Lou WP; Knapp D; Murawala P; Gerber T; Taniguchi Y; Nowoshilow S; Khattak S; Tanaka EM
    Nat Protoc; 2018 Dec; 13(12):2908-2943. PubMed ID: 30429597
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Precise and Predictable CRISPR Chromosomal Rearrangements Reveal Principles of Cas9-Mediated Nucleotide Insertion.
    Shou J; Li J; Liu Y; Wu Q
    Mol Cell; 2018 Aug; 71(4):498-509.e4. PubMed ID: 30033371
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CRISPR/Cas9 Genome Editing in Caenorhabditis elegans: Evaluation of Templates for Homology-Mediated Repair and Knock-Ins by Homology-Independent DNA Repair.
    Katic I; Xu L; Ciosk R
    G3 (Bethesda); 2015 Jun; 5(8):1649-56. PubMed ID: 26044730
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Generalizable sgRNA design for improved CRISPR/Cas9 editing efficiency.
    Hiranniramol K; Chen Y; Liu W; Wang X
    Bioinformatics; 2020 May; 36(9):2684-2689. PubMed ID: 31971562
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Targeted Nucleotide Editing Technologies for Microbial Metabolic Engineering.
    Arazoe T; Kondo A; Nishida K
    Biotechnol J; 2018 Sep; 13(9):e1700596. PubMed ID: 29862665
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Living Organism in your CRISPR Toolbox:
    Vicencio J; Cerón J
    CRISPR J; 2021 Feb; 4(1):32-42. PubMed ID: 33538637
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells.
    Hendel A; Bak RO; Clark JT; Kennedy AB; Ryan DE; Roy S; Steinfeld I; Lunstad BD; Kaiser RJ; Wilkens AB; Bacchetta R; Tsalenko A; Dellinger D; Bruhn L; Porteus MH
    Nat Biotechnol; 2015 Sep; 33(9):985-989. PubMed ID: 26121415
    [TBL] [Abstract][Full Text] [Related]  

  • 52. CRISPR Nickase-Mediated Base Editing in Yeast.
    Kuroda K; Ueda M
    Methods Mol Biol; 2021; 2196():27-37. PubMed ID: 32889710
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optical Control of Genome Editing by Photoactivatable Cas9.
    Otabe T; Nihongaki Y; Sato M
    Methods Mol Biol; 2021; 2312():225-233. PubMed ID: 34228293
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CRISPR/Cas9 Guide RNA Design Rules for Predicting Activity.
    Hiranniramol K; Chen Y; Wang X
    Methods Mol Biol; 2020; 2115():351-364. PubMed ID: 32006410
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Simplified CRISPR tools for efficient genome editing and streamlined protocols for their delivery into mammalian cells and mouse zygotes.
    Jacobi AM; Rettig GR; Turk R; Collingwood MA; Zeiner SA; Quadros RM; Harms DW; Bonthuis PJ; Gregg C; Ohtsuka M; Gurumurthy CB; Behlke MA
    Methods; 2017 May; 121-122():16-28. PubMed ID: 28351759
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Generation of PDX-1 mutant porcine blastocysts by introducing CRISPR/Cas9-system into porcine zygotes via electroporation.
    Tanihara F; Hirata M; Nguyen NT; Le QA; Hirano T; Takemoto T; Nakai M; Fuchimoto DI; Otoi T
    Anim Sci J; 2019 Jan; 90(1):55-61. PubMed ID: 30368976
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CRISPR as a strong gene editing tool.
    Shen S; Loh TJ; Shen H; Zheng X; Shen H
    BMB Rep; 2017 Jan; 50(1):20-24. PubMed ID: 27616359
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Finally, Archaea Get Their CRISPR-Cas Toolbox.
    Gophna U; Allers T; Marchfelder A
    Trends Microbiol; 2017 Jun; 25(6):430-432. PubMed ID: 28391963
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CRISPR-induced double-strand breaks trigger recombination between homologous chromosome arms.
    Brunner E; Yagi R; Debrunner M; Beck-Schneider D; Burger A; Escher E; Mosimann C; Hausmann G; Basler K
    Life Sci Alliance; 2019 Jun; 2(3):. PubMed ID: 31196871
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CRISPR-Cas9 in genome editing: Its function and medical applications.
    Khadempar S; Familghadakchi S; Motlagh RA; Farahani N; Dashtiahangar M; Rezaei H; Gheibi Hayat SM
    J Cell Physiol; 2019 May; 234(5):5751-5761. PubMed ID: 30362544
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 47.