BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 27366910)

  • 1. A Novel, Unbiased Analysis Approach for Investigating Population Dynamics: A Case Study on Calanus finmarchicus and Its Decline in the North Sea.
    Papworth DJ; Marini S; Conversi A
    PLoS One; 2016; 11(7):e0158230. PubMed ID: 27366910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial and temporal shift in the factors affecting the population dynamics of Calanus copepods in the North Sea.
    Montero JT; Lima M; Estay SA; Rezende EL
    Glob Chang Biol; 2021 Feb; 27(3):576-586. PubMed ID: 33063896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predator-prey reversal: a possible mechanism for ecosystem hysteresis in the North Sea?
    Fauchald P
    Ecology; 2010 Aug; 91(8):2191-7. PubMed ID: 20836439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate change-related regime shifts have altered spatial synchrony of plankton dynamics in the North Sea.
    Defriez EJ; Sheppard LW; Reid PC; Reuman DC
    Glob Chang Biol; 2016 Jun; 22(6):2069-80. PubMed ID: 26810148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate, copepods and seabirds in the boreal Northeast Atlantic - current state and future outlook.
    Frederiksen M; Anker-Nilssen T; Beaugrand G; Wanless S
    Glob Chang Biol; 2013 Feb; 19(2):364-72. PubMed ID: 23504776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wasp-waist interactions in the North Sea ecosystem.
    Fauchald P; Skov H; Skern-Mauritzen M; Johns D; Tveraa T
    PLoS One; 2011; 6(7):e22729. PubMed ID: 21829494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Warming of Subarctic waters accelerates development of a key marine zooplankton Calanus finmarchicus.
    Weydmann A; Walczowski W; Carstensen J; Kwaśniewski S
    Glob Chang Biol; 2018 Jan; 24(1):172-183. PubMed ID: 28801968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term oceanographic and ecological research in the Western English Channel.
    Southward AJ; Langmead O; Hardman-Mountford NJ; Aiken J; Boalch GT; Dando PR; Genner MJ; Joint I; Kendall MA; Halliday NC; Harris RP; Leaper R; Mieszkowska N; Pingree RD; Richardson AJ; Sims DW; Smith T; Walne AW; Hawkins SJ
    Adv Mar Biol; 2005; 47():1-105. PubMed ID: 15596166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High dispersal potential has maintained long-term population stability in the North Atlantic copepod Calanus finmarchicus.
    Provan J; Beatty GE; Keating SL; Maggs CA; Savidge G
    Proc Biol Sci; 2009 Jan; 276(1655):301-7. PubMed ID: 18812293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reassessing regime shifts in the North Pacific: incremental climate change and commercial fishing are necessary for explaining decadal-scale biological variability.
    Litzow MA; Mueter FJ; Hobday AJ
    Glob Chang Biol; 2014 Jan; 20(1):38-50. PubMed ID: 23996901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Marine biological shifts and climate.
    Beaugrand G; Goberville E; Luczak C; Kirby RR
    Proc Biol Sci; 2014 May; 281(1783):20133350. PubMed ID: 24718760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling the biogeographic boundary shift of Calanus finmarchicus reveals drivers of Arctic Atlantification by subarctic zooplankton.
    Freer JJ; Daase M; Tarling GA
    Glob Chang Biol; 2022 Jan; 28(2):429-440. PubMed ID: 34652875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The North Atlantic Ecosystem, from Plankton to Whales.
    Pershing AJ; Stamieszkin K
    Ann Rev Mar Sci; 2020 Jan; 12():339-359. PubMed ID: 31226030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenological changes in the Northwestern Mediterranean copepods Centropages typicus and Temora stylifera linked to climate forcing.
    Molinero JC; Ibanez F; Souissi S; Chifflet M; Nival P
    Oecologia; 2005 Oct; 145(4):640-9. PubMed ID: 15965753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding long-term changes in species abundance using a niche-based approach.
    Helaouët P; Beaugrand G; Edwards M
    PLoS One; 2013; 8(11):e79186. PubMed ID: 24265757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of elevated carbon dioxide (CO2) concentrations on early developmental stages of the marine copepod Calanus finmarchicus Gunnerus (Copepoda: Calanoidae).
    Pedersen SA; Våge VT; Olsen AJ; Hammer KM; Altin D
    J Toxicol Environ Health A; 2014; 77(9-11):535-49. PubMed ID: 24754390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate and ecosystem linkages explain widespread declines in North American Atlantic salmon populations.
    Mills KE; Pershing AJ; Sheehan TF; Mountain D
    Glob Chang Biol; 2013 Oct; 19(10):3046-61. PubMed ID: 23780876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate influence on juvenile European sea bass (Dicentrarchus labrax, L.) populations in an estuarine nursery: A decadal overview.
    Bento EG; Grilo TF; Nyitrai D; Dolbeth M; Pardal MÂ; Martinho F
    Mar Environ Res; 2016 Dec; 122():93-104. PubMed ID: 27720527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decadal decline of dominant copepod species in the North Sea is associated with ocean warming: Importance of marine heatwaves.
    Semmouri I; De Schamphelaere KAC; Mortelmans J; Mees J; Asselman J; Janssen CR
    Mar Pollut Bull; 2023 Aug; 193():115159. PubMed ID: 37329739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Projecting the effects of climate change on Calanus finmarchicus distribution within the U.S. Northeast Continental Shelf.
    Grieve BD; Hare JA; Saba VS
    Sci Rep; 2017 Jul; 7(1):6264. PubMed ID: 28740241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.