These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 27367114)

  • 1. Effect of loss on slow-light-enhanced second-harmonic generation in periodic nanostructures.
    Saravi S; Quintero-Bermudez R; Setzpfandt F; Asger Mortensen N; Pertsch T
    Opt Lett; 2016 Jul; 41(13):3110-3. PubMed ID: 27367114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of enhanced second-harmonic generation in periodic nanostructures using modified rigorous coupled-wave analysis in the undepleted-pump approximation.
    Nakagawa W; Tyan RC; Fainman Y
    J Opt Soc Am A Opt Image Sci Vis; 2002 Sep; 19(9):1919-28. PubMed ID: 12216886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics.
    Monat C; Grillet C; Corcoran B; Moss DJ; Eggleton BJ; White TP; Krauss TF
    Opt Express; 2010 Mar; 18(7):6831-40. PubMed ID: 20389702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modal theory of slow light enhanced third-order nonlinear effects in photonic crystal waveguides.
    Chen T; Sun J; Li L
    Opt Express; 2012 Aug; 20(18):20043-58. PubMed ID: 23037057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband second-harmonic phase-matching in dispersion engineered slot waveguides.
    Kim S; Qi M
    Opt Express; 2016 Jan; 24(2):773-86. PubMed ID: 26832462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Giant enhancement of second harmonic generation in nonlinear photonic crystals with distributed Bragg reflector mirrors.
    Ren ML; Li ZY
    Opt Express; 2009 Aug; 17(17):14502-10. PubMed ID: 19687928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced second-harmonic generation from metal-integrated semiconductor nanowires via highly confined whispering gallery modes.
    Ren ML; Liu W; Aspetti CO; Sun L; Agarwal R
    Nat Commun; 2014 Nov; 5():5432. PubMed ID: 25388766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation.
    Pu Y; Grange R; Hsieh CL; Psaltis D
    Phys Rev Lett; 2010 May; 104(20):207402. PubMed ID: 20867063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quasi-phase matching and characterization of high-order harmonic generation in hollow waveguides using counterpropagating light.
    Lytle AL; Zhang X; Sandberg RL; Cohen O; Kapteyn HC; Murnane MM
    Opt Express; 2008 Apr; 16(9):6544-66. PubMed ID: 18545358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear and nonlinear optical waveguiding in bio-inspired peptide nanotubes.
    Handelman A; Apter B; Turko N; Rosenman G
    Acta Biomater; 2016 Jan; 30():72-77. PubMed ID: 26546415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Third-harmonic generation in slow-light chalcogenide glass photonic crystal waveguides.
    Monat C; Spurny M; Grillet C; O'Faolain L; Krauss TF; Eggleton BJ; Bulla D; Madden S; Luther-Davies B
    Opt Lett; 2011 Aug; 36(15):2818-20. PubMed ID: 21808323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced second-harmonic generation from nonlinear optical metamagnetics.
    Sun S; Yi N; Yao W; Song Q; Xiao S
    Opt Express; 2014 Nov; 22(22):26613-20. PubMed ID: 25401811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quasi-periodic and random quasi-phase matching of high harmonic generation.
    Bahabad A; Cohen O; Murnane MM; Kapteyn HC
    Opt Lett; 2008 Sep; 33(17):1936-8. PubMed ID: 18758570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. All-fiber fourth and fifth harmonic generation from a single source.
    Khudus MI; Lee T; De Lucia F; Corbari C; Sazio P; Horak P; Brambilla G
    Opt Express; 2016 Sep; 24(19):21777-93. PubMed ID: 27661915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rigorous intensity and phase-shift manipulation in optical frequency conversion.
    Yang B; Yue YY; Lu RE; Hong XH; Zhang C; Qin YQ; Zhu YY
    Sci Rep; 2016 Jun; 6():27457. PubMed ID: 27272308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation.
    Celebrano M; Wu X; Baselli M; Großmann S; Biagioni P; Locatelli A; De Angelis C; Cerullo G; Osellame R; Hecht B; Duò L; Ciccacci F; Finazzi M
    Nat Nanotechnol; 2015 May; 10(5):412-7. PubMed ID: 25895003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grating-enhanced second-harmonic generation in polymer waveguides: role of losses.
    Popov E; Neviere M; Reinisch R; Coutaz JL; Roux JF
    Appl Opt; 1995 Jun; 34(18):3398-405. PubMed ID: 21052151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unambiguous demonstration of soliton evolution in slow-light silicon photonic crystal waveguides with SFG-XFROG.
    Li X; Liao J; Nie Y; Marko M; Jia H; Liu J; Wang X; Wong CW
    Opt Express; 2015 Apr; 23(8):10282-92. PubMed ID: 25969070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Doubly resonant metallic nanostructure for high conversion efficiency of second harmonic generation.
    Park S; Hahn JW; Lee JY
    Opt Express; 2012 Feb; 20(5):4856-70. PubMed ID: 22418292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmon enhanced second harmonic generation by periodic arrays of triangular nanoholes coupled to quantum emitters.
    Drobnyh E; Sukharev M
    J Chem Phys; 2020 Mar; 152(9):094706. PubMed ID: 33480709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.