These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Preparation and evaluation of paclitaxel-loaded nanoparticle incorporated with galactose-carrying polymer for hepatocyte targeted delivery. Wang Y; Jiang G; Qiu T; Ding F Drug Dev Ind Pharm; 2012 Sep; 38(9):1039-46. PubMed ID: 22124381 [TBL] [Abstract][Full Text] [Related]
24. Peptide-conjugated biodegradable nanoparticles as a carrier to target paclitaxel to tumor neovasculature. Yu DH; Lu Q; Xie J; Fang C; Chen HZ Biomaterials; 2010 Mar; 31(8):2278-92. PubMed ID: 20053444 [TBL] [Abstract][Full Text] [Related]
25. Curcumin-guided nanotherapy: a lipid-based nanomedicine for targeted drug delivery in breast cancer therapy. Lin M; Teng L; Wang Y; Zhang J; Sun X Drug Deliv; 2016 May; 23(4):1420-5. PubMed ID: 26203688 [TBL] [Abstract][Full Text] [Related]
26. Folate-modified, cisplatin-loaded lipid carriers for cervical cancer chemotherapy. Zhang G; Liu F; Jia E; Jia L; Zhang Y Drug Deliv; 2016 May; 23(4):1393-7. PubMed ID: 26165422 [TBL] [Abstract][Full Text] [Related]
27. A co-delivery system based on paclitaxel grafted mPEG-b-PLG loaded with doxorubicin: preparation, in vitro and in vivo evaluation. Li Q; Lv S; Tang Z; Liu M; Zhang D; Yang Y; Chen X Int J Pharm; 2014 Aug; 471(1-2):412-20. PubMed ID: 24905776 [TBL] [Abstract][Full Text] [Related]
28. Hyaluronic acid decorated pluronic P85 solid lipid nanoparticles as a potential carrier to overcome multidrug resistance in cervical and breast cancer. Wang F; Li L; Liu B; Chen Z; Li C Biomed Pharmacother; 2017 Feb; 86():595-604. PubMed ID: 28027535 [TBL] [Abstract][Full Text] [Related]
29. Carcinoembryonic antigen-targeted nanoparticles potentiate the delivery of anticancer drugs to colorectal cancer cells. Pereira I; Sousa F; Kennedy P; Sarmento B Int J Pharm; 2018 Oct; 549(1-2):397-403. PubMed ID: 30110619 [TBL] [Abstract][Full Text] [Related]
30. Improving paclitaxel delivery: in vitro and in vivo characterization of PEGylated polyphosphoester-based nanocarriers. Zhang F; Zhang S; Pollack SF; Li R; Gonzalez AM; Fan J; Zou J; Leininger SE; Pavía-Sanders A; Johnson R; Nelson LD; Raymond JE; Elsabahy M; Hughes DM; Lenox MW; Gustafson TP; Wooley KL J Am Chem Soc; 2015 Feb; 137(5):2056-66. PubMed ID: 25629952 [TBL] [Abstract][Full Text] [Related]
31. Novel free-paclitaxel-loaded redox-responsive nanoparticles based on a disulfide-linked poly(ethylene glycol)-drug conjugate for intracellular drug delivery: synthesis, characterization, and antitumor activity in vitro and in vivo. Chuan X; Song Q; Lin J; Chen X; Zhang H; Dai W; He B; Wang X; Zhang Q Mol Pharm; 2014 Oct; 11(10):3656-70. PubMed ID: 25208098 [TBL] [Abstract][Full Text] [Related]
32. OCTN2-targeted nanoparticles for oral delivery of paclitaxel: differential impact of the polyethylene glycol linker size on drug delivery Kou L; Sun R; Xiao S; Cui X; Sun J; Ganapathy V; Yao Q; Chen R Drug Deliv; 2020 Dec; 27(1):170-179. PubMed ID: 31913724 [TBL] [Abstract][Full Text] [Related]
33. Targeted delivery of polyamidoamine-paclitaxel conjugate functionalized with anti-human epidermal growth factor receptor 2 trastuzumab. Ma P; Zhang X; Ni L; Li J; Zhang F; Wang Z; Lian S; Sun K Int J Nanomedicine; 2015; 10():2173-90. PubMed ID: 25834432 [TBL] [Abstract][Full Text] [Related]
34. Enhanced antitumor efficacy by d-glucosamine-functionalized and paclitaxel-loaded poly(ethylene glycol)-co-poly(trimethylene carbonate) polymer nanoparticles. Jiang X; Xin H; Gu J; Du F; Feng C; Xie Y; Fang X J Pharm Sci; 2014 May; 103(5):1487-96. PubMed ID: 24619482 [TBL] [Abstract][Full Text] [Related]
35. Target-specific cellular uptake of taxol-loaded heparin-PEG-folate nanoparticles. Wang Y; Wang Y; Xiang J; Yao K Biomacromolecules; 2010 Dec; 11(12):3531-8. PubMed ID: 21086982 [TBL] [Abstract][Full Text] [Related]
36. The use of α-conotoxin ImI to actualize the targeted delivery of paclitaxel micelles to α7 nAChR-overexpressing breast cancer. Mei D; Lin Z; Fu J; He B; Gao W; Ma L; Dai W; Zhang H; Wang X; Wang J; Zhang X; Lu W; Zhou D; Zhang Q Biomaterials; 2015 Feb; 42():52-65. PubMed ID: 25542793 [TBL] [Abstract][Full Text] [Related]
37. Functionalized nanoscale β-1,3-glucan to improve Her2+ breast cancer therapy: In vitro and in vivo study. Nasrollahi Z; Mohammadi SR; Mollarazi E; Yadegari MH; Hassan ZM; Talaei F; Dinarvand R; Akbari H; Atyabi F J Control Release; 2015 Mar; 202():49-56. PubMed ID: 25597638 [TBL] [Abstract][Full Text] [Related]
38. Alendronate-decorated biodegradable polymeric micelles for potential bone-targeted delivery of vancomycin. Cong Y; Quan C; Liu M; Liu J; Huang G; Tong G; Yin Y; Zhang C; Jiang Q J Biomater Sci Polym Ed; 2015; 26(11):629-43. PubMed ID: 25994241 [TBL] [Abstract][Full Text] [Related]
39. A novel paclitaxel-loaded poly(epsilon-caprolactone)/Poloxamer 188 blend nanoparticle overcoming multidrug resistance for cancer treatment. Zhang Y; Tang L; Sun L; Bao J; Song C; Huang L; Liu K; Tian Y; Tian G; Li Z; Sun H; Mei L Acta Biomater; 2010 Jun; 6(6):2045-52. PubMed ID: 19969111 [TBL] [Abstract][Full Text] [Related]
40. Transferrin conjugated poly (γ-glutamic acid-maleimide-co-L-lactide)-1,2-dipalmitoylsn-glycero-3-phosphoethanolamine copolymer nanoparticles for targeting drug delivery. Zhao C; Liu X; Liu J; Yang Z; Rong X; Li M; Liang X; Wu Y Colloids Surf B Biointerfaces; 2014 Nov; 123():787-96. PubMed ID: 25454663 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]