These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27367398)

  • 41. Phonon-mediated magnetic polaritons
in the infrared region.
    Wang LP; Zhang ZM
    Opt Express; 2011 Mar; 19 Suppl 2():A126-35. PubMed ID: 21445214
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thermal Decoherence of a Nonequilibrium Polariton Fluid.
    Klembt S; Stepanov P; Klein T; Minguzzi A; Richard M
    Phys Rev Lett; 2018 Jan; 120(3):035301. PubMed ID: 29400531
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Negligible Effect of Vibrational Polaritons on Chemical Reaction Rates via the Density of States Pathway.
    Vurgaftman I; Simpkins BS; Dunkelberger AD; Owrutsky JC
    J Phys Chem Lett; 2020 May; 11(9):3557-3562. PubMed ID: 32298585
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Parametric down-conversion and polariton pair generation in optomechanical systems.
    Liu YC; Xiao YF; Chen YL; Yu XC; Gong Q
    Phys Rev Lett; 2013 Aug; 111(8):083601. PubMed ID: 24010437
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Robust Phonon-Plasmon Coupling in Quasifreestanding Graphene on Silicon Carbide.
    Koch RJ; Fryska S; Ostler M; Endlich M; Speck F; Hänsel T; Schaefer JA; Seyller T
    Phys Rev Lett; 2016 Mar; 116(10):106802. PubMed ID: 27015502
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optically driven quantum dots as source of coherent cavity phonons: a proposal for a phonon laser scheme.
    Kabuss J; Carmele A; Brandes T; Knorr A
    Phys Rev Lett; 2012 Aug; 109(5):054301. PubMed ID: 23006175
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hyperbolic phonon polariton resonances in calcite nanopillars.
    Breslin VM; Ratchford DC; Giles AJ; Dunkelberger AD; Owrutsky JC
    Opt Express; 2021 Apr; 29(8):11760-11772. PubMed ID: 33984951
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Surface phonon-polariton enhanced optical forces in silicon carbide nanostructures.
    Li D; Lawandy NM; Zia R
    Opt Express; 2013 Sep; 21(18):20900-10. PubMed ID: 24103963
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Counter-propagating parametric interaction with phonon-polaritons in periodically poled KTiOPO
    Jang H; Viotti AL; Strömqvist G; Zukauskas A; Canalias C; Pasiskevicius V
    Opt Express; 2017 Feb; 25(3):2677-2686. PubMed ID: 29519109
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Silver Nanoshell Plasmonically Controlled Emission of Semiconductor Quantum Dots in the Strong Coupling Regime.
    Zhou N; Yuan M; Gao Y; Li D; Yang D
    ACS Nano; 2016 Apr; 10(4):4154-63. PubMed ID: 26972554
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Coherent emission of light by thermal sources.
    Greffet JJ; Carminati R; Joulain K; Mulet JP; Mainguy S; Chen Y
    Nature; 2002 Mar; 416(6876):61-4. PubMed ID: 11882890
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultra hybrid plasmonics: strong coupling of plexcitons with plasmon polaritons.
    Balci S; Kocabas C
    Opt Lett; 2015 Jul; 40(14):3424-7. PubMed ID: 26176485
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation.
    Ocelic N; Hillenbrand R
    Nat Mater; 2004 Sep; 3(9):606-9. PubMed ID: 15286756
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interplay between strong coupling and radiative damping of excitons and surface plasmon polaritons in hybrid nanostructures.
    Wang W; Vasa P; Pomraenke R; Vogelgesang R; De Sio A; Sommer E; Maiuri M; Manzoni C; Cerullo G; Lienau C
    ACS Nano; 2014 Jan; 8(1):1056-64. PubMed ID: 24377290
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optical coherent thermal emission by excitation of magnetic polariton in multilayer nanoshell trimer.
    Jia ZX; Shuai Y; Xu SD; Tan HP
    Opt Express; 2015 Sep; 23(19):A1096-110. PubMed ID: 26406740
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing.
    Renger J; Quidant R; van Hulst N; Palomba S; Novotny L
    Phys Rev Lett; 2009 Dec; 103(26):266802. PubMed ID: 20366329
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Controlled Strong Coupling and Absence of Dark Polaritons in Microcavities with Double Quantum Wells.
    Sivalertporn K; Muljarov EA
    Phys Rev Lett; 2015 Aug; 115(7):077401. PubMed ID: 26317745
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Strong coupling between surface plasmon polaritons and emitters: a review.
    Törmä P; Barnes WL
    Rep Prog Phys; 2015 Jan; 78(1):013901. PubMed ID: 25536670
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Localization of phonon polaritons in disordered polar media.
    Satanin AM; Joe YS; Kim CS; Vasilevskiy MI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066618. PubMed ID: 16486089
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Coherent phonon optics in a chip with an electrically controlled active device.
    Poyser CL; Akimov AV; Campion RP; Kent AJ
    Sci Rep; 2015 Feb; 5():8279. PubMed ID: 25652241
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.