These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 27367408)

  • 1. Simulating the Radio-Frequency Dielectric Response of Relaxor Ferroelectrics: Combination of Coarse-Grained Hamiltonians and Kinetic Monte Carlo Simulations.
    Geneste G; Bellaiche L; Kiat JM
    Phys Rev Lett; 2016 Jun; 116(24):247601. PubMed ID: 27367408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subterahertz dielectric relaxation in lead-free Ba(Zr,Ti)O3 relaxor ferroelectrics.
    Wang D; Bokov AA; Ye ZG; Hlinka J; Bellaiche L
    Nat Commun; 2016 Apr; 7():11014. PubMed ID: 27040174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-principles-based effective Hamiltonian simulations of bulks and films made of lead-free Ba(Zr,Ti)O3 relaxor ferroelectrics.
    Prosandeev S; Wang D; Akbarzadeh AR; Bellaiche L
    J Phys Condens Matter; 2015 Jun; 27(22):223202. PubMed ID: 25985266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite-temperature properties of Ba(Zr,Ti)O3 relaxors from first principles.
    Akbarzadeh AR; Prosandeev S; Walter EJ; Al-Barakaty A; Bellaiche L
    Phys Rev Lett; 2012 Jun; 108(25):257601. PubMed ID: 23004657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fano resonance and dipolar relaxation in lead-free relaxors.
    Wang D; Hlinka J; Bokov AA; Ye ZG; Ondrejkovic P; Petzelt J; Bellaiche L
    Nat Commun; 2014 Nov; 5():5100. PubMed ID: 25369904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo simulations for describing the ferroelectric-relaxor crossover in BaTiO₃-based solid solutions.
    Padurariu L; Enachescu C; Mitoseriu L
    J Phys Condens Matter; 2011 Aug; 23(32):325901. PubMed ID: 21785183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topological Point Defects in Relaxor Ferroelectrics.
    Nahas Y; Prokhorenko S; Kornev I; Bellaiche L
    Phys Rev Lett; 2016 Mar; 116(12):127601. PubMed ID: 27058101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relaxor-ferroelectric superlattices: high energy density capacitors.
    Ortega N; Kumar A; Scott JF; Chrisey DB; Tomazawa M; Kumari S; Diestra DG; Katiyar RS
    J Phys Condens Matter; 2012 Nov; 24(44):445901. PubMed ID: 23053172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-principles theory, coarse-grained models, and simulations of ferroelectrics.
    Waghmare UV
    Acc Chem Res; 2014 Nov; 47(11):3242-9. PubMed ID: 25361389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Field-induced percolation of polar nanoregions in relaxor ferroelectrics.
    Prosandeev S; Wang D; Akbarzadeh AR; Dkhil B; Bellaiche L
    Phys Rev Lett; 2013 May; 110(20):207601. PubMed ID: 25167451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crossover from Ferroelectric to Relaxor Behavior in Ba
    Palaimiene E; Macutkevic J; Banys J; Winiarski A; Gruszka I; Koperski J; Molak A
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32630508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of polarization behavior in relaxation of BaTiO₃-based ferroelectrics using wideband dielectric spectroscopy.
    Teranishi T; Hoshina T; Takeda H; Tsurumi T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Oct; 57(10):2118-26. PubMed ID: 20889394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crossover from glassy to inhomogeneous-ferroelectric nonlinear dielectric response in relaxor ferroelectrics.
    Bobnar V; Kutnjak Z; Pirc R; Blinc R; Levstik A
    Phys Rev Lett; 2000 Jun; 84(25):5892-5. PubMed ID: 10991081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dielectric relaxation of relaxor ferroelectric P(VDF-TrFE-CFE) terpolymer over broad frequency range.
    Wang Y; Lu SG; Lanagan M; Zhang Q
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):444-9. PubMed ID: 19411205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anisotropic dielectric function in polar nanoregions of relaxor ferroelectrics.
    Hlinka J; Ostapchuk T; Noujni D; Kamba S; Petzelt J
    Phys Rev Lett; 2006 Jan; 96(2):027601. PubMed ID: 16486640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relaxor-Ferroelectric Films for Dielectric Tunable Applications: Effect of Film Thickness and Applied Electric Field.
    Nguyen MD; Tran DT; Dang HT; Nguyen CTQ; Rijnders G; Vu HN
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping Disorder in Polycrystalline Relaxors: A Piezoresponse Force Microscopy Approach.
    Kholkin AL; Kiselev DA; Bdikin IK; Sternberg A; Dkhil B; Jesse S; Ovchinnikov O; Kalinin SV
    Materials (Basel); 2010 Oct; 3(11):4860-4870. PubMed ID: 28883357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electric field and mechanical stress driven structural inhomogeneity and compositionally induced relaxor phase transformation in modified BaTiO
    Pal S; Swain AB; N V S; Murugavel P
    J Phys Condens Matter; 2020 Jun; 32(36):. PubMed ID: 32357355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric-field-induced local structural phenomena in Pb-based ABO3-type relaxor ferroelectrics.
    Mihailova B; Maier BJ; Steilmann T; Dul'kin E; Roth M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jan; 62(1):7-17. PubMed ID: 25585386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elastic and anelastic relaxations in the relaxor ferroelectric Pb(Mg1/3Nb2/3)O3: II. Strain-order parameter coupling and dynamic softening mechanisms.
    Carpenter MA; Bryson JF; Catalan G; Zhang SJ; Donnelly NJ
    J Phys Condens Matter; 2012 Feb; 24(4):045902. PubMed ID: 22186067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.