These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 27368060)

  • 21. Effects of a 6-week plyometric training program on performances in pubescent swimmers.
    Potdevin FJ; Alberty ME; Chevutschi A; Pelayo P; Sidney MC
    J Strength Cond Res; 2011 Jan; 25(1):80-6. PubMed ID: 21157388
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of auditory stimulus training on swimming start reaction time.
    Papic C; Sinclair P; Fornusek C; Sanders R
    Sports Biomech; 2019 Aug; 18(4):378-389. PubMed ID: 29327649
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High intensity and reduced volume training attenuates stress and recovery levels in elite swimmers.
    Elbe AM; Rasmussen CP; Nielsen G; Nordsborg NB
    Eur J Sport Sci; 2016; 16(3):344-9. PubMed ID: 25867005
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Training-induced changes on blood lactate profile and critical velocity in young swimmers.
    Toubekis AG; Tsami AP; Smilios IG; Douda HT; Tokmakidis SP
    J Strength Cond Res; 2011 Jun; 25(6):1563-70. PubMed ID: 21386726
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Morning Exercise: Enhancement of Afternoon Sprint-Swimming Performance.
    McGowan CJ; Pyne DB; Thompson KG; Raglin JS; Rattray B
    Int J Sports Physiol Perform; 2017 May; 12(5):605-611. PubMed ID: 27617694
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of a 6-week core exercises on swimming performance of national level swimmers.
    Karpiński J; Rejdych W; Brzozowska D; Gołaś A; Sadowski W; Swinarew AS; Stachura A; Gupta S; Stanula A
    PLoS One; 2020; 15(8):e0227394. PubMed ID: 32866148
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Response of Blood Biomarkers to Sprint Interval Swimming.
    Kabasakalis A; Nikolaidis S; Tsalis G; Mougios V
    Int J Sports Physiol Perform; 2020 Sep; 15(10):1442-1447. PubMed ID: 32963121
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How narrow is the spectrum of submaximal speeds in swimming?
    Greco CC; de Oliveira MF; Caputo F; Denadai BS; Dekerle J
    J Strength Cond Res; 2013 May; 27(5):1450-4. PubMed ID: 22744415
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Elite swimmers' internal markers trajectories in ecological training conditions.
    Vacher P; Martinent G; Mourot L; Nicolas M
    Scand J Med Sci Sports; 2018 Aug; 28(8):1866-1877. PubMed ID: 29679415
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relationship Between Training Volume and Ratings of Perceived Exertion in Swimmers.
    de Andrade Nogueira FC; de Freitas VH; Miloski B; de Oliveira Cordeiro AH; Zacaron Werneck F; Yuzo Nakamura F; Gattás Bara-Filho M
    Percept Mot Skills; 2016 Feb; 122(1):319-35. PubMed ID: 27420324
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The changes in age of peak swim speed for elite male and female Swiss freestyle swimmers between 1994 and 2012.
    Rüst CA; Knechtle B; Rosemann T; Lepers R
    J Sports Sci; 2014; 32(3):248-58. PubMed ID: 24016245
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ACTN3 genotype and swimming performance in Taiwan.
    Chiu LL; Wu YF; Tang MT; Yu HC; Hsieh LL; Hsieh SS
    Int J Sports Med; 2011 Jun; 32(6):476-80. PubMed ID: 21472630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of In-Water and Dry-Land Training Programs for Competitive Swimmers in the United States.
    Tate A; Harrington S; Buness M; Murray S; Trout C; Meisel C
    J Sport Rehabil; 2015 Nov; 24(4):353-62. PubMed ID: 26204528
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence of disturbed sleep and increased illness in overreached endurance athletes.
    Hausswirth C; Louis J; Aubry A; Bonnet G; Duffield R; LE Meur Y
    Med Sci Sports Exerc; 2014; 46(5):1036-45. PubMed ID: 24091995
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional overreaching: the key to peak performance during the taper?
    Aubry A; Hausswirth C; Louis J; Coutts AJ; LE Meur Y
    Med Sci Sports Exerc; 2014 Sep; 46(9):1769-77. PubMed ID: 25134000
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Frequency of the MSTN Lys(K)-153Arg(R) polymorphism among track & field athletes and swimmers.
    Ben-Zaken S; Meckel Y; Nemet D; Rabinovich M; Kassem E; Eliakim A
    Growth Horm IGF Res; 2015 Aug; 25(4):196-200. PubMed ID: 25936293
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic responses at various intensities relative to critical swimming velocity.
    Toubekis AG; Tokmakidis SP
    J Strength Cond Res; 2013 Jun; 27(6):1731-41. PubMed ID: 23449237
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Post-activation Potentiation in Propulsive Force after Specific Swimming Strength Training.
    Barbosa AC; Barroso R; Andries O
    Int J Sports Med; 2016 Apr; 37(4):313-7. PubMed ID: 26667922
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acute consumption of a caffeinated energy drink enhances aspects of performance in sprint swimmers.
    Lara B; Ruiz-Vicente D; Areces F; Abián-Vicén J; Salinero JJ; Gonzalez-Millán C; Gallo-Salazar C; Del Coso J
    Br J Nutr; 2015 Sep; 114(6):908-14. PubMed ID: 26279580
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes in physiological and stroking parameters during interval swims at the slope of the d-t relationship.
    Ribeiro LF; Lima MC; Gobatto CA
    J Sci Med Sport; 2010 Jan; 13(1):141-5. PubMed ID: 19119067
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.