These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
500 related articles for article (PubMed ID: 27368089)
1. Analytical method development for powder characterization: Visualization of the critical drug loading affecting the processability of a formulation for direct compression. Hirschberg C; Sun CC; Rantanen J J Pharm Biomed Anal; 2016 Sep; 128():462-468. PubMed ID: 27368089 [TBL] [Abstract][Full Text] [Related]
2. Particle Engineering for Enabling a Formulation Platform Suitable for Manufacturing Low-Dose Tablets by Direct Compression. Sun WJ; Aburub A; Sun CC J Pharm Sci; 2017 Jul; 106(7):1772-1777. PubMed ID: 28322940 [TBL] [Abstract][Full Text] [Related]
3. Systematic development of a high dosage formulation to enable direct compression of a poorly flowing API: A case study. Schaller BE; Moroney KM; Castro-Dominguez B; Cronin P; Belen-Girona J; Ruane P; Croker DM; Walker GM Int J Pharm; 2019 Jul; 566():615-630. PubMed ID: 31158454 [TBL] [Abstract][Full Text] [Related]
4. Insight Into a Novel Strategy for the Design of Tablet Formulations Intended for Direct Compression. Capece M; Huang Z; Davé R J Pharm Sci; 2017 Jun; 106(6):1608-1617. PubMed ID: 28283431 [TBL] [Abstract][Full Text] [Related]
5. Enabling tablet product development of 5-fluorocytosine through integrated crystal and particle engineering. Perumalla SR; Sun CC J Pharm Sci; 2014 Apr; 103(4):1126-32. PubMed ID: 24515970 [TBL] [Abstract][Full Text] [Related]
6. Crystal coating via spray drying to improve powder tabletability. Vanhoorne V; Peeters E; Van Snick B; Remon JP; Vervaet C Eur J Pharm Biopharm; 2014 Nov; 88(3):939-44. PubMed ID: 25445306 [TBL] [Abstract][Full Text] [Related]
7. A microcrystalline cellulose based drug-composite formulation strategy for developing low dose drug tablets. Sun WJ; Sun CC Int J Pharm; 2020 Jul; 585():119517. PubMed ID: 32526333 [TBL] [Abstract][Full Text] [Related]
8. The influence of direct compression powder blend transfer method from the container to the tablet press on product critical quality attributes: a case study. Teżyk M; Jakubowska E; Milczewska K; Milanowski B; Voelkel A; Lulek J Drug Dev Ind Pharm; 2017 Jun; 43(6):911-916. PubMed ID: 28032521 [TBL] [Abstract][Full Text] [Related]
9. Systematic study of paracetamol powder mixtures and granules tabletability: Key role of rheological properties and dynamic image analysis. Macho O; Gabrišová Ľ; Brokešová J; Svačinová P; Mužíková J; Galbavá P; Blaško J; Šklubalová Z Int J Pharm; 2021 Oct; 608():121110. PubMed ID: 34547394 [TBL] [Abstract][Full Text] [Related]
10. Utility of Microcrystalline Cellulose for Improving Drug Content Uniformity in Tablet Manufacturing Using Direct Powder Compression. Nakamura S; Tanaka C; Yuasa H; Sakamoto T AAPS PharmSciTech; 2019 Mar; 20(4):151. PubMed ID: 30903317 [TBL] [Abstract][Full Text] [Related]
11. Improving the Manufacturability of Cohesive and Poorly Compactable API for Direct Compression of Mini-tablets at High Drug Loading via Particle Engineering. Chen L; Lin Y; Irdam E; Madden N; Osei-Yeboah F Pharm Res; 2022 Dec; 39(12):3185-3195. PubMed ID: 36319885 [TBL] [Abstract][Full Text] [Related]
12. A novel mixing rule model to predict the flowability of directly compressed pharmaceutical blends. Aroniada M; Bano G; Vueva Y; Christodoulou C; Li F; Litster JD Int J Pharm; 2023 Nov; 647():123475. PubMed ID: 37832706 [TBL] [Abstract][Full Text] [Related]
13. Massing in high shear wet granulation can simultaneously improve powder flow and deteriorate powder compaction: a double-edged sword. Shi L; Feng Y; Sun CC Eur J Pharm Sci; 2011 May; 43(1-2):50-6. PubMed ID: 21443948 [TBL] [Abstract][Full Text] [Related]
14. A compression behavior classification system of pharmaceutical powders for accelerating direct compression tablet formulation design. Dai S; Xu B; Zhang Z; Yu J; Wang F; Shi X; Qiao Y Int J Pharm; 2019 Dec; 572():118742. PubMed ID: 31648016 [TBL] [Abstract][Full Text] [Related]
15. Direct Compression Tablet Containing 99% Active Ingredient-A Tale of Spherical Crystallization. Chen H; Aburub A; Sun CC J Pharm Sci; 2019 Apr; 108(4):1396-1400. PubMed ID: 30448523 [TBL] [Abstract][Full Text] [Related]
16. Modulating Sticking Propensity of Pharmaceuticals Through Excipient Selection in a Direct Compression Tablet Formulation. Paul S; Sun CC Pharm Res; 2018 Mar; 35(6):113. PubMed ID: 29603027 [TBL] [Abstract][Full Text] [Related]
17. Evaluation and prediction of powder flowability in pharmaceutical tableting. Hildebrandt C; Gopireddy SR; Fritsch AK; Profitlich T; Scherließ R; Urbanetz NA Pharm Dev Technol; 2019 Jan; 24(1):35-47. PubMed ID: 29227171 [TBL] [Abstract][Full Text] [Related]
18. Trace polymer coated clarithromycin spherulites: Formation mechanism, improvement in pharmaceutical properties and development of high-drug-loading direct compression tablets. Zhang X; Su M; Meng W; Zhao J; Huang M; Zhang J; Qian S; Gao Y; Wei Y Int J Pharm; 2024 Apr; 654():123944. PubMed ID: 38403089 [TBL] [Abstract][Full Text] [Related]
19. Engineered particles demonstrate improved flow properties at elevated drug loadings for direct compression manufacturing. Trementozzi AN; Leung CY; Osei-Yeboah F; Irdam E; Lin Y; MacPhee JM; Boulas P; Karki SB; Zawaneh PN Int J Pharm; 2017 May; 523(1):133-141. PubMed ID: 28284921 [TBL] [Abstract][Full Text] [Related]