These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 27368738)

  • 1. Biological devulcanization of ground natural rubber by Gordonia desulfuricans DSM 44462(T) strain.
    Tatangelo V; Mangili I; Caracino P; Anzano M; Najmi Z; Bestetti G; Collina E; Franzetti A; Lasagni M
    Appl Microbiol Biotechnol; 2016 Oct; 100(20):8931-42. PubMed ID: 27368738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cleavage of poly(cis-1,4-isoprene) rubber as solid substrate by cultures of Gordonia polyisoprenivorans.
    Andler R; Hiessl S; Yücel O; Tesch M; Steinbüchel A
    N Biotechnol; 2018 Sep; 44():6-12. PubMed ID: 29530668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the 101-kilobase-pair megaplasmid pKB1, isolated from the rubber-degrading bacterium Gordonia westfalica Kb1.
    Bröker D; Arenskötter M; Legatzki A; Nies DH; Steinbüchel A
    J Bacteriol; 2004 Jan; 186(1):212-25. PubMed ID: 14679241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An overview on waste rubber recycling by microwave devulcanization.
    Zhang T; Asaro L; Gratton M; Aït Hocine N
    J Environ Manage; 2024 Feb; 353():120122. PubMed ID: 38308983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fructophilic behaviour of Gordonia alkanivorans strain 1B during dibenzothiophene desulfurization process.
    Alves L; Paixão SM
    N Biotechnol; 2014 Jan; 31(1):73-9. PubMed ID: 24012483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic desulfurization of ground rubber with the thermophilic archaeon Pyrococcus furiosus--a new method for rubber recycling.
    Bredberg K; Persson J; Christiansson M; Stenberg B; Holst O
    Appl Microbiol Biotechnol; 2001 Jan; 55(1):43-8. PubMed ID: 11234957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Gordonia sp. strain F.5.25.8 capable of dibenzothiophene desulfurization and carbazole utilization.
    Santos SC; Alviano DS; Alviano CS; Pádula M; Leitão AC; Martins OB; Ribeiro CM; Sassaki MY; Matta CP; Bevilaqua J; Sebastián GV; Seldin L
    Appl Microbiol Biotechnol; 2006 Jul; 71(3):355-62. PubMed ID: 16211383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico modeling and evaluation of Gordonia alkanivorans for biodesulfurization.
    Aggarwal S; Karimi IA; Ivan GR
    Mol Biosyst; 2013 Oct; 9(10):2530-40. PubMed ID: 23921469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dibenzothiophene desulfurization by Gordonia alkanivorans strain 1B using recycled paper sludge hydrolyzate.
    Alves L; Marques S; Matos J; Tenreiro R; Gírio FM
    Chemosphere; 2008 Jan; 70(6):967-73. PubMed ID: 17897697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recycling of waste tire rubber: Microwave devulcanization and incorporation in a thermoset resin.
    Aoudia K; Azem S; Aït Hocine N; Gratton M; Pettarin V; Seghar S
    Waste Manag; 2017 Feb; 60():471-481. PubMed ID: 27839838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Devulcanization of waste rubber powder using thiobisphenols as novel reclaiming agent.
    Zhang X; Saha P; Cao L; Li H; Kim J
    Waste Manag; 2018 Aug; 78():980-991. PubMed ID: 32559994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upscaling of a Batch De-Vulcanization Process for Ground Car Tire Rubber to a Continuous Process in a Twin Screw Extruder.
    Saiwari S; van Hoek JW; Dierkes WK; Reuvekamp LEAM; Heideman G; Blume A; Noordermeer JWM
    Materials (Basel); 2016 Aug; 9(9):. PubMed ID: 28773843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current progress in waste tire rubber devulcanization.
    Saputra R; Walvekar R; Khalid M; Mubarak NM; Sillanpää M
    Chemosphere; 2021 Feb; 265():129033. PubMed ID: 33250228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Waste tire rubber devulcanization technologies: State-of-the-art, limitations and future perspectives.
    Wiśniewska P; Wang S; Formela K
    Waste Manag; 2022 Aug; 150():174-184. PubMed ID: 35843055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Devulcanization of natural rubber industry waste in supercritical carbon dioxide combined with diphenyl disulfide.
    Asaro L; Gratton M; Poirot N; Seghar S; Aït Hocine N
    Waste Manag; 2020 Dec; 118():647-654. PubMed ID: 33011542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of additives of commercial rubber compounds on the microbial and enzymatic degradation of poly(cis-1,4-isoprene).
    Altenhoff AL; de Witt J; Andler R; Steinbüchel A
    Biodegradation; 2019 Feb; 30(1):13-26. PubMed ID: 30324341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of culture conditions of Gordonia jacobaea MV-26 on canthaxanthin production.
    Veiga-Crespo P; Blasco L; Rosa-Dos-Santos F; Poza M; Villa TG
    Int Microbiol; 2005 Mar; 8(1):55-8. PubMed ID: 15906262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rubber-degrading organism growing from a human body.
    Gupta M; Prasad D; Khara HS; Alcid D
    Int J Infect Dis; 2010 Jan; 14(1):e75-6. PubMed ID: 19501006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Devulcanization Technologies for Recycling of Tire-Derived Rubber: A Review.
    Markl E; Lackner M
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32164175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organic chemical devulcanization of rubber vulcanizates in supercritical carbon dioxide and associated less eco-unfriendly approaches: A review.
    Gumede JI; Hlangothi BG; Woolard CD; Hlangothi SP
    Waste Manag Res; 2022 May; 40(5):490-503. PubMed ID: 33829913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.