BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 27369373)

  • 1. A simplified approach to estimating the distribution of occasionally-consumed dietary components, applied to alcohol intake.
    Chernova J; Solis-Trapala I
    BMC Med Res Methodol; 2016 Jul; 16():78. PubMed ID: 27369373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mixed-effects model approach for estimating the distribution of usual intake of nutrients: the NCI method.
    Tooze JA; Kipnis V; Buckman DW; Carroll RJ; Freedman LS; Guenther PM; Krebs-Smith SM; Subar AF; Dodd KW
    Stat Med; 2010 Nov; 29(27):2857-68. PubMed ID: 20862656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parametric and nonparametric population methods: their comparative performance in analysing a clinical dataset and two Monte Carlo simulation studies.
    Bustad A; Terziivanov D; Leary R; Port R; Schumitzky A; Jelliffe R
    Clin Pharmacokinet; 2006; 45(4):365-83. PubMed ID: 16584284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing four methods to estimate usual intake distributions.
    Souverein OW; Dekkers AL; Geelen A; Haubrock J; de Vries JH; Ocké MC; Harttig U; Boeing H; van 't Veer P;
    Eur J Clin Nutr; 2011 Jul; 65 Suppl 1():S92-101. PubMed ID: 21731012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new statistical method for estimating the usual intake of episodically consumed foods with application to their distribution.
    Tooze JA; Midthune D; Dodd KW; Freedman LS; Krebs-Smith SM; Subar AF; Guenther PM; Carroll RJ; Kipnis V
    J Am Diet Assoc; 2006 Oct; 106(10):1575-87. PubMed ID: 17000190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Allowing for never and episodic consumers when correcting for error in food record measurements of dietary intake.
    Keogh RH; White IR
    Biostatistics; 2011 Oct; 12(4):624-36. PubMed ID: 21378386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fitting a bivariate measurement error model for episodically consumed dietary components.
    Zhang S; Krebs-Smith SM; Midthune D; Perez A; Buckman DW; Kipnis V; Freedman LS; Dodd KW; Carroll RJ
    Int J Biostat; 2011; 7(1):1. PubMed ID: 22848190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can current dietary exposure models handle aggregated intake from different foods? A simulation study for the case of two foods.
    Slob W; de Boer WJ; van der Voet H
    Food Chem Toxicol; 2010 Jan; 48(1):178-86. PubMed ID: 19799957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physics-driven learning of x-ray skin dose distribution in interventional procedures.
    Roser P; Zhong X; Birkhold A; Strobel N; Kowarschik M; Fahrig R; Maier A
    Med Phys; 2019 Oct; 46(10):4654-4665. PubMed ID: 31407346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ensemble method based on marginal-effect models (EMM) for estimating usual food intake from single-day dietary data and internal/external two-day dietary data.
    Chi SA; Lee H; Lee JE; Lee HS; Kim K; Yeo IK
    Eur J Clin Nutr; 2023 Mar; 77(3):325-334. PubMed ID: 36357566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drinking water contribution to aggregate perchlorate intake of reproductive-age women in the United States estimated by dietary intake simulation and analysis of urinary excretion data.
    Mendez W; Dederick E; Cohen J
    J Expo Sci Environ Epidemiol; 2010 May; 20(3):288-97. PubMed ID: 19773816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling data with excess zeros and measurement error: application to evaluating relationships between episodically consumed foods and health outcomes.
    Kipnis V; Midthune D; Buckman DW; Dodd KW; Guenther PM; Krebs-Smith SM; Subar AF; Tooze JA; Carroll RJ; Freedman LS
    Biometrics; 2009 Dec; 65(4):1003-10. PubMed ID: 19302405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen distribution in tumors: a qualitative analysis and modeling study providing a novel Monte Carlo approach.
    Lagerlöf JH; Kindblom J; Bernhardt P
    Med Phys; 2014 Sep; 41(9):094101. PubMed ID: 25186420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mixed-effect model for positive responses augmented by zeros.
    Rodrigues-Motta M; Galvis Soto DM; Lachos VH; Vilca F; Baltar VT; Junior EV; Fisberg RM; Lobo Marchioni DM
    Stat Med; 2015 May; 34(10):1761-78. PubMed ID: 25682753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of statistical methods to correct food intake distribution: comparison between observed and estimated usual intake.
    Verly E; Oliveira DC; Fisberg RM; Marchioni DM
    Br J Nutr; 2016 Sep; 116(5):897-903. PubMed ID: 27523187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dietary assessment methods: dietary records.
    Ortega RM; Pérez-Rodrigo C; López-Sobaler AM
    Nutr Hosp; 2015 Feb; 31 Suppl 3():38-45. PubMed ID: 25719769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early Experience Analyzing Dietary Intake Data from the Canadian Community Health Survey-Nutrition Using the National Cancer Institute (NCI) Method.
    Davis KA; Gonzalez A; Loukine L; Qiao C; Sadeghpour A; Vigneault M; Wang KC; Ibañez D
    Nutrients; 2019 Aug; 11(8):. PubMed ID: 31443191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity analysis for high quantiles of ochratoxin A exposure distribution.
    Albert I; Gauchi JP
    Int J Food Microbiol; 2002 May; 75(1-2):143-55. PubMed ID: 11999111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial frequency spectrum of the x-ray scatter distribution in CBCT projections.
    Bootsma GJ; Verhaegen F; Jaffray DA
    Med Phys; 2013 Nov; 40(11):111901. PubMed ID: 24320434
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.