These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 27369491)
1. Dissipative particle dynamics of diffusion-NMR requires high Schmidt-numbers. Azhar M; Greiner A; Korvink JG; Kauzlarić D J Chem Phys; 2016 Jun; 144(24):244101. PubMed ID: 27369491 [TBL] [Abstract][Full Text] [Related]
2. Multiscale dissipative particle dynamics. De Fabritiis G; Coveney PV; Flekkøy EG Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):317-31. PubMed ID: 16214683 [TBL] [Abstract][Full Text] [Related]
3. cDPD: A new dissipative particle dynamics method for modeling electrokinetic phenomena at the mesoscale. Deng M; Li Z; Borodin O; Karniadakis GE J Chem Phys; 2016 Oct; 145(14):144109. PubMed ID: 27782504 [TBL] [Abstract][Full Text] [Related]
4. A mesoscopic bridging scale method for fluids and coupling dissipative particle dynamics with continuum finite element method. Kojic M; Filipovic N; Tsuda A Comput Methods Appl Mech Eng; 2013 Jan; 197(6-8):821-833. PubMed ID: 23814322 [TBL] [Abstract][Full Text] [Related]
5. Dissipative particle dynamics at isothermal, isobaric, isoenergetic, and isoenthalpic conditions using Shardlow-like splitting algorithms. Lísal M; Brennan JK; Bonet Avalos J J Chem Phys; 2011 Nov; 135(20):204105. PubMed ID: 22128926 [TBL] [Abstract][Full Text] [Related]
6. Consistent scaling of thermal fluctuations in smoothed dissipative particle dynamics. Vázquez-Quesada A; Ellero M; Español P J Chem Phys; 2009 Jan; 130(3):034901. PubMed ID: 19173537 [TBL] [Abstract][Full Text] [Related]
7. Hydrodynamic interaction in polymer solutions simulated with dissipative particle dynamics. Jiang W; Huang J; Wang Y; Laradji M J Chem Phys; 2007 Jan; 126(4):044901. PubMed ID: 17286503 [TBL] [Abstract][Full Text] [Related]
8. Mesoscopic dynamics of colloids simulated with dissipative particle dynamics and fluid particle model. Dzwinel W; Yuen DA; Boryczko K J Mol Model; 2002 Jan; 8(1):33-43. PubMed ID: 12111400 [TBL] [Abstract][Full Text] [Related]
9. Investigation of DPD transport properties in modeling bioparticle motion under the effect of external forces: Low Reynolds number and high Schmidt scenarios. Waheed W; Alazzam A; Al-Khateeb AN; Sung HJ; Abu-Nada E J Chem Phys; 2019 Feb; 150(5):054901. PubMed ID: 30736676 [TBL] [Abstract][Full Text] [Related]
10. Assessment of mesoscopic particle-based methods in microfluidic geometries. Zhao T; Wang X; Jiang L; Larson RG J Chem Phys; 2013 Aug; 139(8):084109. PubMed ID: 24006976 [TBL] [Abstract][Full Text] [Related]
11. The Lowe-Andersen thermostat as an alternative to the dissipative particle dynamics in the mesoscopic simulation of entangled polymers. Khani S; Yamanoi M; Maia J J Chem Phys; 2013 May; 138(17):174903. PubMed ID: 23656155 [TBL] [Abstract][Full Text] [Related]
12. Coarse-grained simulation of the translational and rotational diffusion of globular proteins by dissipative particle dynamics. Wei J; Liu Y; Song F J Chem Phys; 2020 Dec; 153(23):234902. PubMed ID: 33353321 [TBL] [Abstract][Full Text] [Related]
13. Hydrodynamic interactions for single dissipative-particle-dynamics particles and their clusters and filaments. Pan W; Fedosov DA; Karniadakis GE; Caswell B Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046706. PubMed ID: 18999560 [TBL] [Abstract][Full Text] [Related]
19. Mesoscopic simulation of a thinning liquid bridge using the dissipative particle dynamics method. Mo CJ; Yang LJ; Zhao F; Cui KD Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023008. PubMed ID: 26382504 [TBL] [Abstract][Full Text] [Related]
20. Construction of dissipative particle dynamics models for complex fluids via the Mori-Zwanzig formulation. Li Z; Bian X; Caswell B; Karniadakis GE Soft Matter; 2014 Nov; 10(43):8659-72. PubMed ID: 25252001 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]