These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1163 related articles for article (PubMed ID: 27370132)
1. Experimental and Monte Carlo studies of fluence corrections for graphite calorimetry in low- and high-energy clinical proton beams. Lourenço A; Thomas R; Bouchard H; Kacperek A; Vondracek V; Royle G; Palmans H Med Phys; 2016 Jul; 43(7):4122. PubMed ID: 27370132 [TBL] [Abstract][Full Text] [Related]
2. Fluence correction factors for graphite calorimetry in a low-energy clinical proton beam: I. Analytical and Monte Carlo simulations. Palmans H; Al-Sulaiti L; Andreo P; Shipley D; Lühr A; Bassler N; Martinkovič J; Dobrovodský J; Rossomme S; Thomas RA; Kacperek A Phys Med Biol; 2013 May; 58(10):3481-99. PubMed ID: 23629423 [TBL] [Abstract][Full Text] [Related]
3. Fluence correction factor for graphite calorimetry in a clinical high-energy carbon-ion beam. Lourenço A; Thomas R; Homer M; Bouchard H; Rossomme S; Renaud J; Kanai T; Royle G; Palmans H Phys Med Biol; 2017 Apr; 62(7):N134-N146. PubMed ID: 28211796 [TBL] [Abstract][Full Text] [Related]
4. Monte Carlo study of the depth-dependent fluence perturbation in parallel-plate ionization chambers in electron beams. Zink K; Czarnecki D; Looe HK; von Voigts-Rhetz P; Harder D Med Phys; 2014 Nov; 41(11):111707. PubMed ID: 25370621 [TBL] [Abstract][Full Text] [Related]
5. Fluence correction factors in plastic phantoms for clinical proton beams. Palmans H; Symons JE; Denis JM; de Kock EA; Jones DT; Vynckier S Phys Med Biol; 2002 Sep; 47(17):3055-71. PubMed ID: 12361210 [TBL] [Abstract][Full Text] [Related]
6. Fluence correction factors and stopping power ratios for clinical ion beams. Lühr A; Hansen DC; Sobolevsky N; Palmans H; Rossomme S; Bassler N Acta Oncol; 2011 Aug; 50(6):797-805. PubMed ID: 21767177 [TBL] [Abstract][Full Text] [Related]
7. Comparison of penh, fluka, and Geant4/topas for absorbed dose calculations in air cavities representing ionization chambers in high-energy photon and proton beams. Baumann KS; Horst F; Zink K; Gomà C Med Phys; 2019 Oct; 46(10):4639-4653. PubMed ID: 31350915 [TBL] [Abstract][Full Text] [Related]
8. SU-E-T-146: Reference Dosimetry for Protons and Light-Ion Beams Based on Graphite Calorimetry. Rossomme S; Palmans H; Thomas R; Lee N; Bailey M; Shipley D; Al-Sulaiti L; Cirrone P; Romano F; Kacperek A; Bertrand D; Vynckier S Med Phys; 2012 Jun; 39(6Part12):3736-3737. PubMed ID: 28517815 [TBL] [Abstract][Full Text] [Related]
9. Conversion from dose-to-graphite to dose-to-water in an 80 MeV/A carbon ion beam. Rossomme S; Palmans H; Shipley D; Thomas R; Lee N; Romano F; Cirrone P; Cuttone G; Bertrand D; Vynckier S Phys Med Biol; 2013 Aug; 58(16):5363-80. PubMed ID: 23877166 [TBL] [Abstract][Full Text] [Related]
10. Absolute x-ray dosimetry on a synchrotron medical beam line with a graphite calorimeter. Harty PD; Lye JE; Ramanathan G; Butler DJ; Hall CJ; Stevenson AW; Johnston PN Med Phys; 2014 May; 41(5):052101. PubMed ID: 24784390 [TBL] [Abstract][Full Text] [Related]
11. Water equivalence of some plastic-water phantom materials for clinical proton beam dosimetry. Al-Sulaiti L; Shipley D; Thomas R; Owen P; Kacperek A; Regan PH; Palmans H Appl Radiat Isot; 2012 Jul; 70(7):1052-7. PubMed ID: 22386662 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of the water-equivalence of plastic materials in low- and high-energy clinical proton beams. Lourenço A; Shipley D; Wellock N; Thomas R; Bouchard H; Kacperek A; Fracchiolla F; Lorentini S; Schwarz M; MacDougall N; Royle G; Palmans H Phys Med Biol; 2017 May; 62(10):3883-3901. PubMed ID: 28319031 [TBL] [Abstract][Full Text] [Related]
13. Experimental depth dose curves of a 67.5 MeV proton beam for benchmarking and validation of Monte Carlo simulation. Faddegon BA; Shin J; Castenada CM; Ramos-Méndez J; Daftari IK Med Phys; 2015 Jul; 42(7):4199-210. PubMed ID: 26133619 [TBL] [Abstract][Full Text] [Related]
14. Dosimetry using plane-parallel ionization chambers in a 75 MeV clinical proton beam. Palmans H; Verhaegen F; Denis JM; Vynckier S Phys Med Biol; 2002 Aug; 47(16):2895-905. PubMed ID: 12222853 [TBL] [Abstract][Full Text] [Related]
15. Secondary electron fluence perturbation by high-Z interfaces in clinical proton beams: a Monte Carlo study. Verhaegen F; Palmans H Phys Med Biol; 1999 Jan; 44(1):167-83. PubMed ID: 10071882 [TBL] [Abstract][Full Text] [Related]
16. Direct measurement of electron beam quality conversion factors using water calorimetry. Renaud J; Sarfehnia A; Marchant K; McEwen M; Ross C; Seuntjens J Med Phys; 2015 Nov; 42(11):6357-68. PubMed ID: 26520727 [TBL] [Abstract][Full Text] [Related]
17. Ion recombination and polarity correction factors for a plane-parallel ionization chamber in a proton scanning beam. Liszka M; Stolarczyk L; Kłodowska M; Kozera A; Krzempek D; Mojżeszek N; Pędracka A; Waligórski MPR; Olko P Med Phys; 2018 Jan; 45(1):391-401. PubMed ID: 29131351 [TBL] [Abstract][Full Text] [Related]
18. Monte Carlo simulations of therapeutic proton beams for relative biological effectiveness of double-strand break. Wang CC; Hsiao Y; Lee CC; Chao TC; Wang CC; Tung CJ Int J Radiat Biol; 2012 Jan; 88(1-2):158-63. PubMed ID: 21823821 [TBL] [Abstract][Full Text] [Related]
19. Monte Carlo calculations of correction factors for plastic phantoms in clinical photon and electron beam dosimetry. Araki F; Hanyu Y; Fukuoka M; Matsumoto K; Okumura M; Oguchi H Med Phys; 2009 Jul; 36(7):2992-3001. PubMed ID: 19673198 [TBL] [Abstract][Full Text] [Related]
20. Calculation of water equivalent ratios for various materials at proton energies ranging 10-500 MeV using MCNP, FLUKA, and GEANT4 Monte Carlo codes. Safigholi H; Song WY Phys Med Biol; 2018 Jul; 63(15):155010. PubMed ID: 29968580 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]