These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 27370490)

  • 1. A miniature shoe-mounted orientation determination system for accurate indoor heading and trajectory tracking.
    Zhang S; Yu S; Liu C; Liu S
    Rev Sci Instrum; 2016 Jun; 87(6):065008. PubMed ID: 27370490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Dual-Linear Kalman Filter for Real-Time Orientation Determination System Using Low-Cost MEMS Sensors.
    Zhang S; Yu S; Liu C; Yuan X; Liu S
    Sensors (Basel); 2016 Feb; 16(2):264. PubMed ID: 26907294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematic Model-Based Pedestrian Dead Reckoning for Heading Correction and Lower Body Motion Tracking.
    Lee MS; Ju H; Song JW; Park CG
    Sensors (Basel); 2015 Nov; 15(11):28129-53. PubMed ID: 26561814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research on Pedestrian Indoor Positioning Based on Two-Step Robust Adaptive Cubature Kalman Filter with Smartphone MEMS Sensors.
    Geng J; Yu X; Wu C; Zhang G
    Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heading Estimation for Pedestrian Dead Reckoning Based on Robust Adaptive Kalman Filtering.
    Wu D; Xia L; Geng J
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29921813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smartphone-Based Pedestrian Dead Reckoning for 3D Indoor Positioning.
    Geng J; Xia L; Xia J; Li Q; Zhu H; Cai Y
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved Pedestrian Dead Reckoning Based on a Robust Adaptive Kalman Filter for Indoor Inertial Location System.
    Fan Q; Zhang H; Pan P; Zhuang X; Jia J; Zhang P; Zhao Z; Zhu G; Tang Y
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30642088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attitude and Heading Estimation for Indoor Positioning Based on the Adaptive Cubature Kalman Filter.
    Geng J; Xia L; Wu D
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33451172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quaternion-based unscented Kalman filter for accurate indoor heading estimation using wearable multi-sensor system.
    Yuan X; Yu S; Zhang S; Wang G; Liu S
    Sensors (Basel); 2015 May; 15(5):10872-90. PubMed ID: 25961384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RadarPDR: Radar-Assisted Indoor Pedestrian Dead Reckoning.
    He J; Xiang W; Zhang Q; Wang B
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the Heading Accuracy in Indoor Pedestrian Navigation Based on a Decision Tree and Kalman Filter.
    Hu G; Zhang W; Wan H; Li X
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32178289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vector graph assisted pedestrian dead reckoning using an unconstrained smartphone.
    Qian J; Pei L; Ma J; Ying R; Liu P
    Sensors (Basel); 2015 Mar; 15(3):5032-57. PubMed ID: 25738763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applying a ToF/IMU-Based Multi-Sensor Fusion Architecture in Pedestrian Indoor Navigation Methods.
    Farhangian F; Sefidgar M; Landry RJ
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34067380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved Position Accuracy of Foot-Mounted Inertial Sensor by Discrete Corrections from Vision-Based Fiducial Marker Tracking.
    Khan H; Clark A; Woodward G; Lindeman RW
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32899771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drift Reduction in Pedestrian Navigation System by Exploiting Motion Constraints and Magnetic Field.
    Ilyas M; Cho K; Baeg SH; Park S
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27618056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pedestrian Stride-Length Estimation Based on LSTM and Denoising Autoencoders.
    Wang Q; Ye L; Luo H; Men A; Zhao F; Huang Y
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic-Map-Matching-Aided Pedestrian Navigation Using Outlier Mitigation Based on Multiple Sensors and Roughness Weighting.
    Kim YH; Choi MJ; Kim EJ; Song JW
    Sensors (Basel); 2019 Nov; 19(21):. PubMed ID: 31684139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel Drift Reduction Methods in Foot-Mounted PDR System.
    Zhang W; Wei D; Yuan H
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heading Estimation for Indoor Pedestrian Navigation Using a Smartphone in the Pocket.
    Deng ZA; Wang G; Hu Y; Wu D
    Sensors (Basel); 2015 Aug; 15(9):21518-36. PubMed ID: 26343679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Context-Aware Smartphone-Based 3D Indoor Positioning Using Pedestrian Dead Reckoning.
    Khalili B; Ali Abbaspour R; Chehreghan A; Vesali N
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.