These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 27370498)
1. Characterization for Cassie-Wenzel wetting transition based on the force response in the process of squeezing liquid drops by two parallel superhydrophobic surfaces. Li J Rev Sci Instrum; 2016 Jun; 87(6):065108. PubMed ID: 27370498 [TBL] [Abstract][Full Text] [Related]
2. Squeezing Drops: Force Measurements of the Cassie-to-Wenzel Transition. Garcia-Gonzalez D; Corrales TP; Dacunzi M; Kappl M Langmuir; 2022 Dec; 38(48):14666-14672. PubMed ID: 36410035 [TBL] [Abstract][Full Text] [Related]
3. Friction force-based measurements for simultaneous determination of the wetting properties and stability of superhydrophobic surfaces. Beitollahpoor M; Farzam M; Pesika NS J Colloid Interface Sci; 2023 Oct; 648():161-168. PubMed ID: 37301141 [TBL] [Abstract][Full Text] [Related]
4. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces. Zheng QS; Yu Y; Zhao ZH Langmuir; 2005 Dec; 21(26):12207-12. PubMed ID: 16342993 [TBL] [Abstract][Full Text] [Related]
5. Two types of Cassie-to-Wenzel wetting transitions on superhydrophobic surfaces during drop impact. Lee C; Nam Y; Lastakowski H; Hur JI; Shin S; Biance AL; Pirat C; Kim CJ; Ybert C Soft Matter; 2015 Jun; 11(23):4592-9. PubMed ID: 25959867 [TBL] [Abstract][Full Text] [Related]
6. Cassie-Wenzel wetting transition in vibrating drops deposited on rough surfaces: is the dynamic Cassie-Wenzel wetting transition a 2D or 1D affair? Bormashenko E; Pogreb R; Whyman G; Erlich M Langmuir; 2007 Jun; 23(12):6501-3. PubMed ID: 17497815 [TBL] [Abstract][Full Text] [Related]
7. Transition of Liquid Drops on Microstructured Hygrophobic Surfaces from the Impaled Wenzel State to the "Fakir" Cassie-Baxter State. Tzitzilis D; Tsekeridis C; Ntakoumis I; Papadopoulos P Langmuir; 2024 Jul; 40(26):13422-13427. PubMed ID: 38825812 [TBL] [Abstract][Full Text] [Related]
8. Activated Wetting of Nanostructured Surfaces: Reaction Coordinates, Finite Size Effects, and Simulation Pitfalls. Amabili M; Meloni S; Giacomello A; Casciola CM J Phys Chem B; 2018 Jan; 122(1):200-212. PubMed ID: 29200302 [TBL] [Abstract][Full Text] [Related]
9. Fully reversible transition from Wenzel to Cassie-Baxter states on corrugated superhydrophobic surfaces. Vrancken RJ; Kusumaatmaja H; Hermans K; Prenen AM; Pierre-Louis O; Bastiaansen CW; Broer DJ Langmuir; 2010 Mar; 26(5):3335-41. PubMed ID: 19928892 [TBL] [Abstract][Full Text] [Related]
10. Metastable wetting on superhydrophobic surfaces: continuum and atomistic views of the Cassie-Baxter-Wenzel transition. Giacomello A; Chinappi M; Meloni S; Casciola CM Phys Rev Lett; 2012 Nov; 109(22):226102. PubMed ID: 23368136 [TBL] [Abstract][Full Text] [Related]
11. Electrical switching of wetting states on superhydrophobic surfaces: a route towards reversible Cassie-to-Wenzel transitions. Manukyan G; Oh JM; van den Ende D; Lammertink RG; Mugele F Phys Rev Lett; 2011 Jan; 106(1):014501. PubMed ID: 21231746 [TBL] [Abstract][Full Text] [Related]
12. Robust Cassie state of wetting in transparent superhydrophobic coatings. Tuvshindorj U; Yildirim A; Ozturk FE; Bayindir M ACS Appl Mater Interfaces; 2014 Jun; 6(12):9680-8. PubMed ID: 24823960 [TBL] [Abstract][Full Text] [Related]
13. Resonance Cassie-Wenzel wetting transition for horizontally vibrated drops deposited on a rough surface. Bormashenko E; Pogreb R; Whyman G; Erlich M Langmuir; 2007 Nov; 23(24):12217-21. PubMed ID: 17956134 [TBL] [Abstract][Full Text] [Related]
14. Slippery Wenzel State. Dai X; Stogin BB; Yang S; Wong TS ACS Nano; 2015 Sep; 9(9):9260-7. PubMed ID: 26302154 [TBL] [Abstract][Full Text] [Related]
15. Temperature-regulated adhesion of impacting drops on nano/microtextured monostable superrepellent surfaces. Shi S; Lv C; Zheng Q Soft Matter; 2020 Jun; 16(23):5388-5397. PubMed ID: 32490478 [TBL] [Abstract][Full Text] [Related]
16. Explaining Evaporation-Triggered Wetting Transition Using Local Force Balance Model and Contact Line-Fraction. Annavarapu RK; Kim S; Wang M; Hart AJ; Sojoudi H Sci Rep; 2019 Jan; 9(1):405. PubMed ID: 30674992 [TBL] [Abstract][Full Text] [Related]
17. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces. Erbil HY; Cansoy CE Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435 [TBL] [Abstract][Full Text] [Related]
18. Intermediate States of Wetting on Hierarchical Superhydrophobic Surfaces. Rofman B; Dehe S; Frumkin V; Hardt S; Bercovici M Langmuir; 2020 May; 36(20):5517-5523. PubMed ID: 32337996 [TBL] [Abstract][Full Text] [Related]
19. Influence of geometric patterns of microstructured superhydrophobic surfaces on water-harvesting performance via dewing. Seo D; Lee C; Nam Y Langmuir; 2014 Dec; 30(51):15468-76. PubMed ID: 25466626 [TBL] [Abstract][Full Text] [Related]
20. Investigating the superhydrophobic behavior for underwater surfaces using impedance-based methods. Tuberquia JC; Song WS; Jennings GK Anal Chem; 2011 Aug; 83(16):6184-90. PubMed ID: 21696148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]