These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 27370508)

  • 1. Note: Experimental observation of nano-channel pattern in light sheet laser interference nanolithography system.
    Mohan K; Mondal PP
    Rev Sci Instrum; 2016 Jun; 87(6):066107. PubMed ID: 27370508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MRT letter: Two-photon excitation-based 2pi light-sheet system for nano-lithography.
    Mohan K; Mondal PP
    Microsc Res Tech; 2015 Jan; 78(1):1-7. PubMed ID: 25431252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-sheet based lithography technique for patterning an array of microfluidic channels.
    Mohan K; Mondal PP
    Microsc Res Tech; 2018 Sep; 81(9):936-940. PubMed ID: 28176422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterning of periodic nano-cavities on PEDOT-PSS using nanosphere-assisted near-field optical enhancement and laser interference lithography.
    Yuan D; Lasagni A; Hendricks JL; Martin DC; Das S
    Nanotechnology; 2012 Jan; 23(1):015304. PubMed ID: 22155970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Note: Multi-sheet light enables optical interference lithography.
    Mohan K; Tyagi A; Mondal PP
    Rev Sci Instrum; 2018 Jun; 89(6):066106. PubMed ID: 29960546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sidelobe suppression in structured light sheet fluorescence microscopy by the superposition of two light sheets.
    Han Q; Shi J; Shi F
    Biomed Opt Express; 2023 Mar; 14(3):1178-1191. PubMed ID: 36950249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel optical nanolithography using nanoscale bowtie aperture array.
    Uppuluri SM; Kinzel EC; Li Y; Xu X
    Opt Express; 2010 Mar; 18(7):7369-75. PubMed ID: 20389758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategies for patterning biomolecules with dip-pen nanolithography.
    Wu CC; Reinhoudt DN; Otto C; Subramaniam V; Velders AH
    Small; 2011 Apr; 7(8):989-1002. PubMed ID: 21400657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualization of surface plasmon interference by imprinting intensity patterns on a photosensitive polymer.
    König T; Santer S
    Nanotechnology; 2012 Dec; 23(48):485304. PubMed ID: 23124330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive subwavelength control of nano-optical fields.
    Aeschlimann M; Bauer M; Bayer D; Brixner T; García de Abajo FJ; Pfeiffer W; Rohmer M; Spindler C; Steeb F
    Nature; 2007 Mar; 446(7133):301-4. PubMed ID: 17361179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A nanoscale bio-inspired light-harvesting system developed from self-assembled alkyl-functionalized metallochlorin nano-aggregates.
    Ocakoglu K; Joya KS; Harputlu E; Tarnowska A; Gryko DT
    Nanoscale; 2014 Aug; 6(16):9625-31. PubMed ID: 24909123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatic nanolithography in polymers using atomic force microscopy.
    Lyuksyutov SF; Vaia RA; Paramonov PB; Juhl S; Waterhouse L; Ralich RM; Sigalov G; Sancaktar E
    Nat Mater; 2003 Jul; 2(7):468-72. PubMed ID: 12819776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption mechanisms of L-Glutathione on Au and controlled nano-patterning through Dip Pen Nanolithography.
    Calborean A; Martin F; Marconi D; Turcu R; Kacso IE; Buimaga-Iarinca L; Graur F; Turcu I
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():171-80. PubMed ID: 26354252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of femtosecond-laser induced nanostructures in optical memory.
    Shimotsuma Y; Sakakura M; Miura K; Qiu J; Kazansky PG; Fujita K; Hirao K
    J Nanosci Nanotechnol; 2007 Jan; 7(1):94-104. PubMed ID: 17455477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast computation of constructive and destructive interference areas in partially coherent imaging for resolution enhancement in optical microlithography.
    Yamazoe K; Sekine Y; Honda T
    Appl Opt; 2009 Mar; 48(8):1419-24. PubMed ID: 19277072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple excitation nano-spot generation and confocal detection for far-field microscopy.
    Mondal PP
    Nanoscale; 2010 Mar; 2(3):381-4. PubMed ID: 20644819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-plasmon-polaritons-assisted nanolithography with dual-wavelength illumination for high exposure depth.
    Shi S; Zhang Z; Du J; Yang Z; Shi R; Li S; Gao F
    Opt Lett; 2012 Jan; 37(2):247-9. PubMed ID: 22854482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of plasmon destructive interferences on optical properties of gold planar quadrumers.
    Rahmani M; Tahmasebi T; Lin Y; Lukiyanchuk B; Liew TY; Hong MH
    Nanotechnology; 2011 Jun; 22(24):245204. PubMed ID: 21543829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interference component of the acoustic field corresponding to the Long-Range Ocean Acoustic Propagation Experiment.
    Grigorieva NS; Fridman GM; Mercer JA; Andrew RK; Wolfson MA; Howe BM; Colosi JA
    J Acoust Soc Am; 2009 Apr; 125(4):1919-29. PubMed ID: 19354367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-density channel alignment of graded index core polymer optical waveguide and its crosstalk analysis with ray tracing method.
    Hsu HH; Ishigure T
    Opt Express; 2010 Jun; 18(13):13368-78. PubMed ID: 20588466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.