These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

452 related articles for article (PubMed ID: 27370904)

  • 21. Mechanical and permeability properties of porous scaffolds developed by a Voronoi tessellation for bone tissue engineering.
    Zhao Z; Li J; Yao D; Wei Y
    J Mater Chem B; 2022 Nov; 10(46):9699-9712. PubMed ID: 36398681
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of 3D PCL microsphere/TiO
    Khoshroo K; Jafarzadeh Kashi TS; Moztarzadeh F; Tahriri M; Jazayeri HE; Tayebi L
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):586-598. PubMed ID: 27770931
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering.
    Chen G; Dong C; Yang L; Lv Y
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):15790-802. PubMed ID: 26151287
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Finite element analysis of mechanical behavior, permeability and fluid induced wall shear stress of high porosity scaffolds with gyroid and lattice-based architectures.
    Ali D; Sen S
    J Mech Behav Biomed Mater; 2017 Nov; 75():262-270. PubMed ID: 28759838
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluating 3D-printed biomaterials as scaffolds for vascularized bone tissue engineering.
    Wang MO; Vorwald CE; Dreher ML; Mott EJ; Cheng MH; Cinar A; Mehdizadeh H; Somo S; Dean D; Brey EM; Fisher JP
    Adv Mater; 2015 Jan; 27(1):138-44. PubMed ID: 25387454
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of scaffold design for bone tissue engineering: A computational and experimental study.
    Dias MR; Guedes JM; Flanagan CL; Hollister SJ; Fernandes PR
    Med Eng Phys; 2014 Apr; 36(4):448-57. PubMed ID: 24636449
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design and mechanical properties analysis of heterogeneous porous scaffolds based on bone slice images.
    Wang X; Chen J; Dong X; Guan Y; Kang Y
    Int J Numer Method Biomed Eng; 2023 Mar; 39(3):e3673. PubMed ID: 36537649
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-parameter design of triply periodic minimal surface scaffolds: from geometry optimization to biomechanical simulation.
    Yang X; Sun Z; Hu Y; Mi C
    Biomed Mater; 2024 Jul; 19(5):. PubMed ID: 38917813
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantification of fluid shear stress in bone tissue engineering scaffolds with spherical and cubical pore architectures.
    Zhao F; Vaughan TJ; McNamara LM
    Biomech Model Mechanobiol; 2016 Jun; 15(3):561-77. PubMed ID: 26224148
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design, construction and mechanical testing of digital 3D anatomical data-based PCL-HA bone tissue engineering scaffold.
    Yao Q; Wei B; Guo Y; Jin C; Du X; Yan C; Yan J; Hu W; Xu Y; Zhou Z; Wang Y; Wang L
    J Mater Sci Mater Med; 2015 Jan; 26(1):5360. PubMed ID: 25596860
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering.
    Li Y; Xiong J; Wong CS; Hodgson PD; Wen C
    Tissue Eng Part A; 2009 Oct; 15(10):3151-9. PubMed ID: 19351266
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Geometry Design Optimization of Functionally Graded Scaffolds for Bone Tissue Engineering: A Mechanobiological Approach.
    Boccaccio A; Uva AE; Fiorentino M; Mori G; Monno G
    PLoS One; 2016; 11(1):e0146935. PubMed ID: 26771746
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy.
    Ma H; Feng C; Chang J; Wu C
    Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strut size and surface area effects on long-term in vivo degradation in computer designed poly(L-lactic acid) three-dimensional porous scaffolds.
    Saito E; Liu Y; Migneco F; Hollister SJ
    Acta Biomater; 2012 Jul; 8(7):2568-77. PubMed ID: 22446030
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone.
    Wieding J; Wolf A; Bader R
    J Mech Behav Biomed Mater; 2014 Sep; 37():56-68. PubMed ID: 24942627
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical characterization of structurally porous biomaterials built via additive manufacturing: experiments, predictive models, and design maps for load-bearing bone replacement implants.
    Melancon D; Bagheri ZS; Johnston RB; Liu L; Tanzer M; Pasini D
    Acta Biomater; 2017 Nov; 63():350-368. PubMed ID: 28927929
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An improved trabecular bone model based on Voronoi tessellation.
    Zhou Y; Isaksson P; Persson C
    J Mech Behav Biomed Mater; 2023 Dec; 148():106172. PubMed ID: 37852087
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D printed scaffold design for bone defects with improved mechanical and biological properties.
    Fallah A; Altunbek M; Bartolo P; Cooper G; Weightman A; Blunn G; Koc B
    J Mech Behav Biomed Mater; 2022 Oct; 134():105418. PubMed ID: 36007489
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D printed porous ceramic scaffolds for bone tissue engineering: a review.
    Wen Y; Xun S; Haoye M; Baichuan S; Peng C; Xuejian L; Kaihong Z; Xuan Y; Jiang P; Shibi L
    Biomater Sci; 2017 Aug; 5(9):1690-1698. PubMed ID: 28686244
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Morphological and mechanical characterization of 3D printed PLA scaffolds with controlled porosity for trabecular bone tissue replacement.
    Baptista R; Guedes M
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111528. PubMed ID: 33255081
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.