These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 27371017)
1. Microchip electrophoresis with background electrolyte containing polyacrylic acid and high content organic solvent in cyclic olefin copolymer microchips for easily adsorbed dyes. Wei X; Sun P; Yang S; Zhao L; Wu J; Li F; Pu Q J Chromatogr A; 2016 Jul; 1457():144-50. PubMed ID: 27371017 [TBL] [Abstract][Full Text] [Related]
2. Zwitterionic surfactant as an additive for efficient electrophoretic separation of easily absorbed rhodamine dyes on plastic microchips. Qian J; Li H; Wang Y; Li Y; Yu J; Zhou L; Pu Q J Chromatogr A; 2023 Jan; 1688():463716. PubMed ID: 36565653 [TBL] [Abstract][Full Text] [Related]
3. The use of ethylene glycol solution as the running buffer for highly efficient microchip-based electrophoresis in unmodified cyclic olefin copolymer microchips. Wang Q; Zhang Y; Ding H; Wu J; Wang L; Zhou L; Pu Q J Chromatogr A; 2011 Dec; 1218(52):9422-7. PubMed ID: 22099226 [TBL] [Abstract][Full Text] [Related]
4. Poly(methylmethacrylate) and Topas capillary electrophoresis microchip performance with electrochemical detection. Castaño-Alvarez M; Fernández-Abedul MT; Costa-García A Electrophoresis; 2005 Aug; 26(16):3160-8. PubMed ID: 16041703 [TBL] [Abstract][Full Text] [Related]
5. A strategy to modulate the electrophoretic behavior in plastic microchips using sodium polystyrene sulfonate. Guo J; Chen Y; Zhao L; Sun P; Li H; Zhou L; Wang X; Pu Q J Chromatogr A; 2016 Dec; 1477():132-140. PubMed ID: 27908499 [TBL] [Abstract][Full Text] [Related]
6. Enhanced capillary zone electrophoresis in cyclic olefin copolymer microchannels using the combination of dynamic and static coatings for rapid analysis of carnosine and niacinamide in cosmetics. Chen Y; Xia L; Xiao X; Li G J Sep Sci; 2022 Jun; 45(12):2045-2054. PubMed ID: 35324077 [TBL] [Abstract][Full Text] [Related]
7. Application of derivative and derivative ratio spectrophotometry to simultaneous trace determination of rhodamine B and rhodamine 6G after dispersive liquid-liquid microextraction. Xiao N; Deng J; Huang K; Ju S; Hu C; Liang J Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():312-8. PubMed ID: 24691361 [TBL] [Abstract][Full Text] [Related]
8. Underivatized cyclic olefin copolymer as substrate material and stationary phase for capillary and microchip electrochromatography. Gustafsson O; Mogensen KB; Kutter JP Electrophoresis; 2008 Aug; 29(15):3145-52. PubMed ID: 18618461 [TBL] [Abstract][Full Text] [Related]
9. High performance of cyclic olefin copolymer-based capillary electrophoretic chips. Roy S; Das T; Yue CY ACS Appl Mater Interfaces; 2013 Jun; 5(12):5683-9. PubMed ID: 23748936 [TBL] [Abstract][Full Text] [Related]
10. Polyelectrolyte coatings for microchip capillary electrophoresis. Liu Y; Henry CS Methods Mol Biol; 2006; 339():57-64. PubMed ID: 16790867 [TBL] [Abstract][Full Text] [Related]
11. Fast and interference-free determination of glyphosate and glufosinate residues through electrophoresis in disposable microfluidic chips. Wei X; Gao X; Zhao L; Peng X; Zhou L; Wang J; Pu Q J Chromatogr A; 2013 Mar; 1281():148-54. PubMed ID: 23398994 [TBL] [Abstract][Full Text] [Related]
12. [Surface-modified microchip electrophoretic separation and analysis of functional components in health care products]. Lau WC; Chen YL; Xia L; Xiao XH; Li GK Se Pu; 2023 Oct; 41(10):937-948. PubMed ID: 37875416 [TBL] [Abstract][Full Text] [Related]
13. High performance separation of quaternary amines using microchip non-aqueous electrophoresis coupled with contactless conductivity detection. Moreira RC; Lopes MS; Medeiros Junior I; Coltro WKT J Chromatogr A; 2017 May; 1499():190-195. PubMed ID: 28396087 [TBL] [Abstract][Full Text] [Related]
14. [Fluorescence quenching assay of ultratrace horseradish peroxidase using rhodamine dye]. Ma WS; Huang GX; Liang AH; Jiang ZL Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):759-61. PubMed ID: 19455817 [TBL] [Abstract][Full Text] [Related]
15. An integrated plastic microchip for enhancing electrophoretic separation using tunable pressure-driven backflows. Liu Y; Xia L; Xiao X; Li G Electrophoresis; 2022 Apr; 43(7-8):892-900. PubMed ID: 35020208 [TBL] [Abstract][Full Text] [Related]
16. Quantitative analysis of synthetic dyes in lipstick by micellar electrokinetic capillary chromatography. Desiderio C; Marra C; Fanali S Electrophoresis; 1998 Jun; 19(8-9):1478-83. PubMed ID: 9694299 [TBL] [Abstract][Full Text] [Related]