BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 27371350)

  • 1. iTRAQ-based quantitative proteomic analysis reveals the role of the tonoplast in fruit senescence.
    Liu R; Wang Y; Qin G; Tian S
    J Proteomics; 2016 Sep; 146():80-9. PubMed ID: 27371350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A proteomic investigation of apple fruit during ripening and in response to ethylene treatment.
    Zheng Q; Song J; Campbell-Palmer L; Thompson K; Li L; Walker B; Cui Y; Li X
    J Proteomics; 2013 Nov; 93():276-94. PubMed ID: 23435059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteome Analysis of Vacuoles Isolated from Fig (Ficus carica L.) Flesh during Fruit Development.
    Kuang L; Chen S; Guo Y; Scheuring D; Flaishman MA; Ma H
    Plant Cell Physiol; 2022 Jun; 63(6):785-801. PubMed ID: 35348748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-free quantitative proteomics to investigate strawberry fruit proteome changes under controlled atmosphere and low temperature storage.
    Li L; Luo Z; Huang X; Zhang L; Zhao P; Ma H; Li X; Ban Z; Liu X
    J Proteomics; 2015 Apr; 120():44-57. PubMed ID: 25753123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyzing the Vacuolar Membrane (Tonoplast) Proteome.
    Ohnishi M; Yoshida K; Mimura T
    Methods Mol Biol; 2018; 1696():107-116. PubMed ID: 29086399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel tonoplast transporters identified using a proteomic approach with vacuoles isolated from cauliflower buds.
    Schmidt UG; Endler A; Schelbert S; Brunner A; Schnell M; Neuhaus HE; Marty-Mazars D; Marty F; Baginsky S; Martinoia E
    Plant Physiol; 2007 Sep; 145(1):216-29. PubMed ID: 17660356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New insights into the tonoplast architecture of plant vacuoles and vacuolar dynamics during osmotic stress.
    Reisen D; Marty F; Leborgne-Castel N
    BMC Plant Biol; 2005 Aug; 5():13. PubMed ID: 16080795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic analysis of changes in mitochondrial protein expression during peach fruit ripening and senescence.
    Wu X; Jiang L; Yu M; An X; Ma R; Yu Z
    J Proteomics; 2016 Sep; 147():197-211. PubMed ID: 27288903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A tonoplast Glu/Asp/GABA exchanger that affects tomato fruit amino acid composition.
    Snowden CJ; Thomas B; Baxter CJ; Smith JA; Sweetlove LJ
    Plant J; 2015 Mar; 81(5):651-60. PubMed ID: 25602029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Proteome Analysis Reveals Changes in the Protein Landscape During Grape Berry Development With a Focus on Vacuolar Transport Proteins.
    Kuang L; Chen S; Guo Y; Ma H
    Front Plant Sci; 2019; 10():641. PubMed ID: 31156689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative proteomic investigation employing stable isotope labeling by peptide dimethylation on proteins of strawberry fruit at different ripening stages.
    Li L; Song J; Kalt W; Forney C; Tsao R; Pinto D; Chisholm K; Campbell L; Fillmore S; Li X
    J Proteomics; 2013 Dec; 94():219-39. PubMed ID: 24075981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of intact vacuoles and proteomic analysis of tonoplast from suspension-cultured cells of Arabidopsis thaliana.
    Shimaoka T; Ohnishi M; Sazuka T; Mitsuhashi N; Hara-Nishimura I; Shimazaki K; Maeshima M; Yokota A; Tomizawa K; Mimura T
    Plant Cell Physiol; 2004 Jun; 45(6):672-83. PubMed ID: 15215502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach.
    Endler A; Meyer S; Schelbert S; Schneider T; Weschke W; Peters SW; Keller F; Baginsky S; Martinoia E; Schmidt UG
    Plant Physiol; 2006 May; 141(1):196-207. PubMed ID: 16581873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo phosphorylation sites of barley tonoplast proteins identified by a phosphoproteomic approach.
    Endler A; Reiland S; Gerrits B; Schmidt UG; Baginsky S; Martinoia E
    Proteomics; 2009 Jan; 9(2):310-21. PubMed ID: 19142958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative detection of changes in the leaf-mesophyll tonoplast proteome in dependency of a cadmium exposure of barley (Hordeum vulgare L.) plants.
    Schneider T; Schellenberg M; Meyer S; Keller F; Gehrig P; Riedel K; Lee Y; Eberl L; Martinoia E
    Proteomics; 2009 May; 9(10):2668-77. PubMed ID: 19391183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteome analysis of pear reveals key genes associated with fruit development and quality.
    Li JM; Huang XS; Li LT; Zheng DM; Xue C; Zhang SL; Wu J
    Planta; 2015 Jun; 241(6):1363-79. PubMed ID: 25682102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peach fruit ripening: A proteomic comparative analysis of the mesocarp of two cultivars with different flesh firmness at two ripening stages.
    Prinsi B; Negri AS; Fedeli C; Morgutti S; Negrini N; Cocucci M; Espen L
    Phytochemistry; 2011 Jul; 72(10):1251-62. PubMed ID: 21315381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting of tonoplast proteins to the vacuole.
    Rojas-Pierce M
    Plant Sci; 2013 Oct; 211():132-6. PubMed ID: 23987818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of Vacuoles and the Tonoplast.
    Zouhar J
    Methods Mol Biol; 2017; 1511():113-118. PubMed ID: 27730606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic and metabolomic study of wax apple (Syzygium samarangense) fruit during ripening process.
    Jamil NAM; Rahmad N; Rosli NHM; Al-Obaidi JR
    Electrophoresis; 2018 Dec; 39(23):2954-2964. PubMed ID: 30074628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.