These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
357 related articles for article (PubMed ID: 27371561)
1. The Vulnerability of Tropical Ectotherms to Warming Is Modulated by the Microclimatic Heterogeneity. Pincebourde S; Suppo C Integr Comp Biol; 2016 Jul; 56(1):85-97. PubMed ID: 27371561 [TBL] [Abstract][Full Text] [Related]
2. Fine-Scale Microclimatic Variation Can Shape the Responses of Organisms to Global Change in Both Natural and Urban Environments. Pincebourde S; Murdock CC; Vickers M; Sears MW Integr Comp Biol; 2016 Jul; 56(1):45-61. PubMed ID: 27107292 [TBL] [Abstract][Full Text] [Related]
3. Can behaviour and physiology mitigate effects of warming on ectotherms? A test in urban ants. Youngsteadt E; Prado SG; Keleher KJ; Kirchner M J Anim Ecol; 2023 Mar; 92(3):568-579. PubMed ID: 36642830 [TBL] [Abstract][Full Text] [Related]
4. The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. Woods HA; Dillon ME; Pincebourde S J Therm Biol; 2015 Dec; 54():86-97. PubMed ID: 26615730 [TBL] [Abstract][Full Text] [Related]
5. There is plenty of room at the bottom: microclimates drive insect vulnerability to climate change. Pincebourde S; Woods HA Curr Opin Insect Sci; 2020 Oct; 41():63-70. PubMed ID: 32777713 [TBL] [Abstract][Full Text] [Related]
6. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Sunday JM; Bates AE; Kearney MR; Colwell RK; Dulvy NK; Longino JT; Huey RB Proc Natl Acad Sci U S A; 2014 Apr; 111(15):5610-5. PubMed ID: 24616528 [TBL] [Abstract][Full Text] [Related]
7. Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change. Andrew NR; Hart RA; Jung MP; Hemmings Z; Terblanche JS J Insect Physiol; 2013 Sep; 59(9):870-80. PubMed ID: 23806604 [TBL] [Abstract][Full Text] [Related]
8. Heat seekers: A tropical nocturnal lizard uses behavioral thermoregulation to exploit rare microclimates at night. Nordberg EJ; Schwarzkopf L J Therm Biol; 2019 May; 82():107-114. PubMed ID: 31128638 [TBL] [Abstract][Full Text] [Related]
9. Regional climate modulates the canopy mosaic of favourable and risky microclimates for insects. Pincebourde S; Sinoquet H; Combes D; Casas J J Anim Ecol; 2007 May; 76(3):424-38. PubMed ID: 17439460 [TBL] [Abstract][Full Text] [Related]
10. Arboreality drives heat tolerance while elevation drives cold tolerance in tropical rainforest ants. Leahy L; Scheffers BR; Williams SE; Andersen AN Ecology; 2022 Jan; 103(1):e03549. PubMed ID: 34618920 [TBL] [Abstract][Full Text] [Related]
11. Climate heterogeneity modulates impact of warming on tropical insects. Bonebrake TC; Deutsch CA Ecology; 2012 Mar; 93(3):449-55. PubMed ID: 22624199 [TBL] [Abstract][Full Text] [Related]
12. Tropical amphibians in shifting thermal landscapes under land-use and climate change. Nowakowski AJ; Watling JI; Whitfield SM; Todd BD; Kurz DJ; Donnelly MA Conserv Biol; 2017 Feb; 31(1):96-105. PubMed ID: 27254115 [TBL] [Abstract][Full Text] [Related]
13. Narrow safety margin in the phyllosphere during thermal extremes. Pincebourde S; Casas J Proc Natl Acad Sci U S A; 2019 Mar; 116(12):5588-5596. PubMed ID: 30782803 [TBL] [Abstract][Full Text] [Related]
14. Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Kaspari M; Clay NA; Lucas J; Yanoviak SP; Kay A Glob Chang Biol; 2015 Mar; 21(3):1092-102. PubMed ID: 25242246 [TBL] [Abstract][Full Text] [Related]
15. Thermal physiological traits in tropical lowland amphibians: Vulnerability to climate warming and cooling. von May R; Catenazzi A; Santa-Cruz R; Gutierrez AS; Moritz C; Rabosky DL PLoS One; 2019; 14(8):e0219759. PubMed ID: 31369565 [TBL] [Abstract][Full Text] [Related]
16. Temperature dependence of metabolic rate in tropical and temperate aquatic insects: Support for the Climate Variability Hypothesis in mayflies but not stoneflies. Shah AA; Woods HA; Havird JC; Encalada AC; Flecker AS; Funk WC; Guayasamin JM; Kondratieff BC; Poff NL; Thomas SA; Zamudio KR; Ghalambor CK Glob Chang Biol; 2021 Jan; 27(2):297-311. PubMed ID: 33064866 [TBL] [Abstract][Full Text] [Related]
17. Impacts of climate warming on terrestrial ectotherms across latitude. Deutsch CA; Tewksbury JJ; Huey RB; Sheldon KS; Ghalambor CK; Haak DC; Martin PR Proc Natl Acad Sci U S A; 2008 May; 105(18):6668-72. PubMed ID: 18458348 [TBL] [Abstract][Full Text] [Related]
18. Response to thermal and hydric regimes point to differential inter- and intraspecific vulnerability of tropical amphibians to climate warming. Delgado-Suazo P; Burrowes PA J Therm Biol; 2022 Jan; 103():103148. PubMed ID: 35027199 [TBL] [Abstract][Full Text] [Related]
19. The effect of thermal microenvironment in upper thermal tolerance plasticity in tropical tadpoles. Implications for vulnerability to climate warming. Turriago JL; Tejedo M; Hoyos JM; Bernal MH J Exp Zool A Ecol Integr Physiol; 2022 Aug; 337(7):746-759. PubMed ID: 35674344 [TBL] [Abstract][Full Text] [Related]
20. Cropland Microclimate and Leaf-nesting Behavior Shape the Growth of Caterpillar under Future Warming. Wang L; Xing S; Chang X; Ma L; Wenda C Integr Comp Biol; 2024 Sep; 64(3):932-943. PubMed ID: 38755000 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]