These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
332 related articles for article (PubMed ID: 27372009)
1. Enhanced adsorption of cesium on PVA-alginate encapsulated Prussian blue-graphene oxide hydrogel beads in a fixed-bed column system. Jang J; Lee DS Bioresour Technol; 2016 Oct; 218():294-300. PubMed ID: 27372009 [TBL] [Abstract][Full Text] [Related]
2. Adsorption of phosphate from aqueous solution using electrochemically modified biochar calcium-alginate beads: Batch and fixed-bed column performance. Jung KW; Jeong TU; Choi JW; Ahn KH; Lee SH Bioresour Technol; 2017 Nov; 244(Pt 1):23-32. PubMed ID: 28777987 [TBL] [Abstract][Full Text] [Related]
3. Prussian blue caged in alginate/calcium beads as adsorbents for removal of cesium ions from contaminated water. Vipin AK; Hu B; Fugetsu B J Hazard Mater; 2013 Aug; 258-259():93-101. PubMed ID: 23708451 [TBL] [Abstract][Full Text] [Related]
4. Poly(vinyl alcohol) and alginate cross-linked matrix with immobilized Prussian blue and ion exchange resin for cesium removal from waters. Lai YC; Chang YR; Chen ML; Lo YK; Lai JY; Lee DJ Bioresour Technol; 2016 Aug; 214():192-198. PubMed ID: 27132227 [TBL] [Abstract][Full Text] [Related]
5. Calcium-alginate/carbon nanotubes/TiO Hartono MR; Kushmaro A; Marks RS; Chen X Water Sci Technol; 2016 Oct; 74(7):1585-1593. PubMed ID: 27763338 [TBL] [Abstract][Full Text] [Related]
6. Surface modification of poly(vinyl alcohol) sponge by acrylic acid to immobilize Prussian blue for selective adsorption of aqueous cesium. Wi H; Kim H; Oh D; Bae S; Hwang Y Chemosphere; 2019 Jul; 226():173-182. PubMed ID: 30927669 [TBL] [Abstract][Full Text] [Related]
7. Facile synthesis of copper ferrocyanide-embedded magnetic hydrogel beads for the enhanced removal of cesium from water. Lee I; Park CW; Yoon SS; Yang HM Chemosphere; 2019 Jun; 224():776-785. PubMed ID: 30851529 [TBL] [Abstract][Full Text] [Related]
8. Modeling of breakthrough curves for aqueous iron (III) adsorption on chitosan-sodium tripolyphosphate. Sánchez-Machado DI; López-Cervantes J; Correa-Murrieta MA; Sánchez-Duarte RG Water Sci Technol; 2016 Nov; 74(10):2297-2304. PubMed ID: 27858786 [TBL] [Abstract][Full Text] [Related]
9. Use of rice husk for the adsorption of congo red from aqueous solution in column mode. Han R; Ding D; Xu Y; Zou W; Wang Y; Li Y; Zou L Bioresour Technol; 2008 May; 99(8):2938-46. PubMed ID: 17706420 [TBL] [Abstract][Full Text] [Related]
10. Methylene blue adsorption on graphene oxide/calcium alginate composites. Li Y; Du Q; Liu T; Sun J; Wang Y; Wu S; Wang Z; Xia Y; Xia L Carbohydr Polym; 2013 Jun; 95(1):501-7. PubMed ID: 23618299 [TBL] [Abstract][Full Text] [Related]
11. Adsorption of lysozyme by alginate/graphene oxide composite beads with enhanced stability and mechanical property. Li J; Ma J; Chen S; Huang Y; He J Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():25-32. PubMed ID: 29752096 [TBL] [Abstract][Full Text] [Related]
12. Layered double hydroxide-alginate/polyvinyl alcohol beads: fabrication and phosphate removal from aqueous solution. Kim Phuong NT Environ Technol; 2014; 35(21-24):2829-36. PubMed ID: 25176487 [TBL] [Abstract][Full Text] [Related]
13. Graphene oxide encapsulated polyvinyl alcohol/sodium alginate hydrogel microspheres for Cu (II) and U (VI) removal. Yi X; Sun F; Han Z; Han F; He J; Ou M; Gu J; Xu X Ecotoxicol Environ Saf; 2018 Aug; 158():309-318. PubMed ID: 29729598 [TBL] [Abstract][Full Text] [Related]
14. Sodium alginate/graphene oxide hydrogel beads as permeable reactive barrier material for the remediation of ciprofloxacin-contaminated groundwater. Zhao P; Yu F; Wang R; Ma Y; Wu Y Chemosphere; 2018 Jun; 200():612-620. PubMed ID: 29510369 [TBL] [Abstract][Full Text] [Related]
15. Adsorptive removal of ciprofloxacin by sodium alginate/graphene oxide composite beads from aqueous solution. Fei Y; Li Y; Han S; Ma J J Colloid Interface Sci; 2016 Dec; 484():196-204. PubMed ID: 27614043 [TBL] [Abstract][Full Text] [Related]
16. Buckwheat hull-derived biochar immobilized in alginate beads for the adsorptive removal of cobalt from aqueous solutions. Lim Y; Kim B; Jang J; Lee DS J Hazard Mater; 2022 Aug; 436():129245. PubMed ID: 35739764 [TBL] [Abstract][Full Text] [Related]
17. Continuous fixed bed adsorption of Cu(II) by halloysite nanotube-alginate hybrid beads: an experimental and modelling study. Wang Y; Zhang X; Wang Q; Zhang B; Liu J Water Sci Technol; 2014; 70(2):192-9. PubMed ID: 25051464 [TBL] [Abstract][Full Text] [Related]
18. Performance and cell toxicity studies for the use of graphene oxide-bimetallic oxide hybrids in the absorptive removal of Pb(II) from wastewater: fixed-bed column study with regeneration. Raj S; Singh H; Hansda AK; Goswami R; Bhattacharya J Environ Sci Pollut Res Int; 2023 Dec; 30(60):124950-124963. PubMed ID: 36787059 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of Prussian blue-embedded magnetic micro hydrogel for scavenging of cesium from aqueous solutions; Batch and dynamic investigations. Abd-Elhamid AI; Abu Elgoud EM; Aly HF Int J Biol Macromol; 2024 Jan; 254(Pt 2):126864. PubMed ID: 37703986 [TBL] [Abstract][Full Text] [Related]
20. Batch and fixed-bed column study for p-nitrophenol, methylene blue, and U(VI) removal by polyvinyl alcohol-graphene oxide macroporous hydrogel bead. Chen D; Zhou J; Wang H; Yang K Water Sci Technol; 2018 Jan; 77(1-2):91-100. PubMed ID: 29339607 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]