BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 27372165)

  • 1. Metabolic, autophagic, and mitophagic activities in cancer initiation and progression.
    Hjelmeland A; Zhang J
    Biomed J; 2016 Apr; 39(2):98-106. PubMed ID: 27372165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling.
    Lee J; Giordano S; Zhang J
    Biochem J; 2012 Jan; 441(2):523-40. PubMed ID: 22187934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Roles of Mitochondria in Autophagic Cell Death.
    Chen Z; Liu X; Ma S
    Cancer Biother Radiopharm; 2016 Oct; 31(8):269-276. PubMed ID: 27754749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative stress-induced autophagy in plants: the role of mitochondria.
    Minibayeva F; Dmitrieva S; Ponomareva A; Ryabovol V
    Plant Physiol Biochem; 2012 Oct; 59():11-9. PubMed ID: 22386760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ROS, mitochondria and the regulation of autophagy.
    Scherz-Shouval R; Elazar Z
    Trends Cell Biol; 2007 Sep; 17(9):422-7. PubMed ID: 17804237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unacylated ghrelin normalizes skeletal muscle oxidative stress and prevents muscle catabolism by enhancing tissue mitophagy in experimental chronic kidney disease.
    Gortan Cappellari G; Semolic A; Ruozi G; Vinci P; Guarnieri G; Bortolotti F; Barbetta D; Zanetti M; Giacca M; Barazzoni R
    FASEB J; 2017 Dec; 31(12):5159-5171. PubMed ID: 28778977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
    Martinez-Outschoorn U; Sotgia F; Lisanti MP
    Semin Oncol; 2014 Apr; 41(2):195-216. PubMed ID: 24787293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal autophagic degradation of oxidatively damaged organelles after photodynamic stress is amplified by mitochondrial reactive oxygen species.
    Rubio N; Coupienne I; Di Valentin E; Heirman I; Grooten J; Piette J; Agostinis P
    Autophagy; 2012 Sep; 8(9):1312-24. PubMed ID: 22889744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive oxygen species regulation of autophagy in cancer: implications for cancer treatment.
    Li L; Ishdorj G; Gibson SB
    Free Radic Biol Med; 2012 Oct; 53(7):1399-410. PubMed ID: 22820461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Regulation Mechanisms and Interactions Between Reactive Oxygen Species and Mitophagy.
    Fan P; Xie XH; Chen CH; Peng X; Zhang P; Yang C; Wang YT
    DNA Cell Biol; 2019 Jan; 38(1):10-22. PubMed ID: 30556744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox homeostasis, oxidative stress and mitophagy.
    Garza-Lombó C; Pappa A; Panayiotidis MI; Franco R
    Mitochondrion; 2020 Mar; 51():105-117. PubMed ID: 31972372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grape seed extract targets mitochondrial electron transport chain complex III and induces oxidative and metabolic stress leading to cytoprotective autophagy and apoptotic death in human head and neck cancer cells.
    Shrotriya S; Deep G; Lopert P; Patel M; Agarwal R; Agarwal C
    Mol Carcinog; 2015 Dec; 54(12):1734-47. PubMed ID: 25557495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interconnections between apoptotic and autophagic pathways during thiopurine-induced toxicity in cancer cells: the role of reactive oxygen species.
    Chaabane W; Appell ML
    Oncotarget; 2016 Nov; 7(46):75616-75634. PubMed ID: 27689330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pirfenidone inhibits myofibroblast differentiation and lung fibrosis development during insufficient mitophagy.
    Kurita Y; Araya J; Minagawa S; Hara H; Ichikawa A; Saito N; Kadota T; Tsubouchi K; Sato N; Yoshida M; Kobayashi K; Ito S; Fujita Y; Utsumi H; Yanagisawa H; Hashimoto M; Wakui H; Yoshii Y; Ishikawa T; Numata T; Kaneko Y; Asano H; Yamashita M; Odaka M; Morikawa T; Nakayama K; Kuwano K
    Respir Res; 2017 Jun; 18(1):114. PubMed ID: 28577568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. To betray or to fight? The dual identity of the mitochondria in cancer.
    Zhang X; Su Q; Zhou J; Yang Z; Liu Z; Ji L; Gao H; Jiang G
    Future Oncol; 2021 Feb; 17(6):723-743. PubMed ID: 33459048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unravelling the relationship between macroautophagy and mitochondrial ROS in cancer therapy.
    Zhao Y; Qu T; Wang P; Li X; Qiang J; Xia Z; Duan H; Huang J; Zhu L
    Apoptosis; 2016 May; 21(5):517-31. PubMed ID: 27007273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autophagy and mitophagy interplay in melanoma progression.
    Maes H; Agostinis P
    Mitochondrion; 2014 Nov; 19 Pt A():58-68. PubMed ID: 25042464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ROS, autophagy, mitochondria and cancer: Ras, the hidden master?
    Bellot GL; Liu D; Pervaiz S
    Mitochondrion; 2013 May; 13(3):155-62. PubMed ID: 22750269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy.
    Poillet-Perez L; Despouy G; Delage-Mourroux R; Boyer-Guittaut M
    Redox Biol; 2015; 4():184-92. PubMed ID: 25590798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective degradation of mitochondria by mitophagy.
    Kim I; Rodriguez-Enriquez S; Lemasters JJ
    Arch Biochem Biophys; 2007 Jun; 462(2):245-53. PubMed ID: 17475204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.