These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 27372244)
1. Genome-Scale Metabolic Model for the Green Alga Chlorella vulgaris UTEX 395 Accurately Predicts Phenotypes under Autotrophic, Heterotrophic, and Mixotrophic Growth Conditions. Zuñiga C; Li CT; Huelsman T; Levering J; Zielinski DC; McConnell BO; Long CP; Knoshaug EP; Guarnieri MT; Antoniewicz MR; Betenbaugh MJ; Zengler K Plant Physiol; 2016 Sep; 172(1):589-602. PubMed ID: 27372244 [TBL] [Abstract][Full Text] [Related]
2. Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium. Mohammad Mirzaie MA; Kalbasi M; Mousavi SM; Ghobadian B Prep Biochem Biotechnol; 2016; 46(2):150-6. PubMed ID: 25807048 [TBL] [Abstract][Full Text] [Related]
3. Genome-based metabolic mapping and 13C flux analysis reveal systematic properties of an oleaginous microalga Chlorella protothecoides. Wu C; Xiong W; Dai J; Wu Q Plant Physiol; 2015 Feb; 167(2):586-99. PubMed ID: 25511434 [TBL] [Abstract][Full Text] [Related]
4. Optimizing culture conditions for heterotrophic-assisted photoautotrophic biofilm growth of Chlorella vulgaris to simultaneously improve microalgae biomass and lipid productivity. Ye Y; Huang Y; Xia A; Fu Q; Liao Q; Zeng W; Zheng Y; Zhu X Bioresour Technol; 2018 Dec; 270():80-87. PubMed ID: 30212777 [TBL] [Abstract][Full Text] [Related]
5. Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Abreu AP; Fernandes B; Vicente AA; Teixeira J; Dragone G Bioresour Technol; 2012 Aug; 118():61-6. PubMed ID: 22705507 [TBL] [Abstract][Full Text] [Related]
6. Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions. Kim S; Park JE; Cho YB; Hwang SJ Bioresour Technol; 2013 Sep; 144():8-13. PubMed ID: 23850820 [TBL] [Abstract][Full Text] [Related]
7. Kinetic modelling of growth and storage molecule production in microalgae under mixotrophic and autotrophic conditions. Adesanya VO; Davey MP; Scott SA; Smith AG Bioresour Technol; 2014 Apr; 157():293-304. PubMed ID: 24576922 [TBL] [Abstract][Full Text] [Related]
8. Physiological and Ecological Aspects of Chlorella sorokiniana (Trebouxiophyceae) Under Photoautotrophic and Mixotrophic Conditions. Marchello AE; Dos Santos AC; Lombardi AT; de Souza CWO; Montanhim GC Microb Ecol; 2018 Oct; 76(3):791-800. PubMed ID: 29520451 [TBL] [Abstract][Full Text] [Related]
9. Utilizing genome-scale models to optimize nutrient supply for sustained algal growth and lipid productivity. Li CT; Yelsky J; Chen Y; Zuñiga C; Eng R; Jiang L; Shapiro A; Huang KW; Zengler K; Betenbaugh MJ NPJ Syst Biol Appl; 2019; 5():33. PubMed ID: 31583115 [TBL] [Abstract][Full Text] [Related]
10. Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition. Lin TS; Wu JY Bioresour Technol; 2015 May; 184():100-107. PubMed ID: 25443671 [TBL] [Abstract][Full Text] [Related]
12. Sugar-stimulated CO Fu W; Gudmundsson S; Wichuk K; Palsson S; Palsson BO; Salehi-Ashtiani K; Brynjólfsson S Sci Total Environ; 2019 Mar; 654():275-283. PubMed ID: 30445327 [TBL] [Abstract][Full Text] [Related]
13. Nitrate concentration-shift cultivation to enhance protein content of heterotrophic microalga Chlorella vulgaris: Over-compensation strategy. Xie T; Xia Y; Zeng Y; Li X; Zhang Y Bioresour Technol; 2017 Jun; 233():247-255. PubMed ID: 28285215 [TBL] [Abstract][Full Text] [Related]
14. [Effects of different trophic modes on growth characteristics, metabolism and cellular components of Chlorella vulgaris]. Kong W; Wang Y; Yang H; Xi Y; Han R; Niu S Wei Sheng Wu Xue Bao; 2015 Mar; 55(3):299-310. PubMed ID: 26065272 [TBL] [Abstract][Full Text] [Related]
15. Chlorella vulgaris genome assembly and annotation reveals the molecular basis for metabolic acclimation to high light conditions. Cecchin M; Marcolungo L; Rossato M; Girolomoni L; Cosentino E; Cuine S; Li-Beisson Y; Delledonne M; Ballottari M Plant J; 2019 Dec; 100(6):1289-1305. PubMed ID: 31437318 [TBL] [Abstract][Full Text] [Related]
16. Maximizing Biomass and Lipid Production in Heterotrophic Culture of Chlorella vulgaris: Techno-Economic Assessment. Morowvat MH; Ghasemi Y Recent Pat Food Nutr Agric; 2019; 10(2):115-123. PubMed ID: 30205808 [TBL] [Abstract][Full Text] [Related]
17. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Liang Y; Sarkany N; Cui Y Biotechnol Lett; 2009 Jul; 31(7):1043-9. PubMed ID: 19322523 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of microalgal biomass and lipid productivities by a model of photoautotrophic culture with heterotrophic cells as seed. Han F; Huang J; Li Y; Wang W; Wang J; Fan J; Shen G Bioresour Technol; 2012 Aug; 118():431-7. PubMed ID: 22717560 [TBL] [Abstract][Full Text] [Related]
19. Effect of pH on growth and lipid accumulation kinetics of the microalga Chlorella vulgaris grown heterotrophically under sulfur limitation. Sakarika M; Kornaros M Bioresour Technol; 2016 Nov; 219():694-701. PubMed ID: 27544920 [TBL] [Abstract][Full Text] [Related]
20. Effect of Different Cultivation Modes (Photoautotrophic, Mixotrophic, and Heterotrophic) on the Growth of Yun HS; Kim YS; Yoon HS Front Bioeng Biotechnol; 2021; 9():774143. PubMed ID: 34976972 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]