BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 27372264)

  • 1. Using aquatic vegetation to remediate nitrate, ammonium, and soluble reactive phosphorus in simulated runoff.
    Moore MT; Locke MA; Kröger R
    Chemosphere; 2016 Oct; 160():149-54. PubMed ID: 27372264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can Rice (Oryza sativa) Mitigate Pesticides and Nutrients in Agricultural Runoff?
    Moore MT; Locke MA
    Bull Environ Contam Toxicol; 2018 Jan; 100(1):162-166. PubMed ID: 29196795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitigation of atrazine, S-metolachlor, and diazinon using common emergent aquatic vegetation.
    Moore MT; Locke MA; Kröger R
    J Environ Sci (China); 2017 Jun; 56():114-121. PubMed ID: 28571845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aqueous pesticide mitigation efficiency of Typha latifolia (L.), Leersia oryzoides (L.) Sw., and Sparganium americanum Nutt.
    Moore MT; Tyler HL; Locke MA
    Chemosphere; 2013 Aug; 92(10):1307-13. PubMed ID: 23732006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth characteristics and nutrient removal capability of eco-ditch plants in mesocosm sediment receiving primary domestic wastewater.
    Kumwimba MN; Zhu B; Muyembe DK; Dzakpasu M
    Environ Sci Pollut Res Int; 2017 Oct; 24(30):23926-23938. PubMed ID: 28875404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoremediation of biosolids from an end-of-life municipal lagoon using cattail (Typha latifolia L.) and switchgrass (Panicum virgatum L.).
    Jeke NN; Hassan AO; Zvomuya F
    Int J Phytoremediation; 2017 Mar; 19(3):270-280. PubMed ID: 27593432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen and phosphorus removal and Typha domingensis tolerance in a floating treatment wetland.
    Di Luca GA; Mufarrege MM; Hadad HR; Maine MA
    Sci Total Environ; 2019 Feb; 650(Pt 1):233-240. PubMed ID: 30196224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ability of four emergent macrophytes to remediate permethrin in mesocosm experiments.
    Moore MT; Kröger R; Cooper CM; Smith S
    Arch Environ Contam Toxicol; 2009 Aug; 57(2):282-8. PubMed ID: 19458989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macrophytes as potential biomonitors in peri-urban wetlands of the Middle Parana River (Argentina).
    Alonso X; Hadad HR; Córdoba C; Polla W; Reyes MS; Fernández V; Granados I; Marino L; Villalba A
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):312-323. PubMed ID: 29034426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term decreases in phosphorus and suspended solids, but not nitrogen, in six upper Mississippi River tributaries, 1991-2014.
    Kreiling RM; Houser JN
    Environ Monit Assess; 2016 Aug; 188(8):454. PubMed ID: 27393194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of five plant species in removal of nitrogen and phosphorus from an experimental phytoremediation system in the Ningxia irrigation area.
    Chen C; Zhao T; Liu R; Luo L
    Environ Monit Assess; 2017 Sep; 189(10):497. PubMed ID: 28890992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytoremediation of effluents from aluminum smelters: a study of Al retention in mesocosms containing aquatic plants.
    Goulet RR; Lalonde JD; Munger C; Dupuis S; Dumont-Frenette G; Prémont S; Campbell PG
    Water Res; 2005 Jun; 39(11):2291-300. PubMed ID: 15950256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrasting Nutrient Mitigation and Denitrification Potential of Agricultural Drainage Environments with Different Emergent Aquatic Macrophytes.
    Taylor JM; Moore MT; Scott JT
    J Environ Qual; 2015 Jul; 44(4):1304-14. PubMed ID: 26437112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regional Effects of Agricultural Conservation Practices on Nutrient Transport in the Upper Mississippi River Basin.
    García AM; Alexander RB; Arnold JG; Norfleet L; White MJ; Robertson DM; Schwarz G
    Environ Sci Technol; 2016 Jul; 50(13):6991-7000. PubMed ID: 27243625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing nitrogen and phosphorus removal potential of five plant species in floating treatment wetlands receiving simulated nursery runoff.
    Spangler JT; Sample DJ; Fox LJ; Albano JP; White SA
    Environ Sci Pollut Res Int; 2019 Feb; 26(6):5751-5768. PubMed ID: 30612349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant species richness enhances nitrogen retention in green roof plots.
    Johnson C; Schweinhart S; Buffam I
    Ecol Appl; 2016 Oct; 26(7):2130-2144. PubMed ID: 27755723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth response and tissue accumulation trends of herbaceous wetland plant species exposed to elevated aqueous mercury levels.
    Willis JM; Gambrell RP; Hester MW
    Int J Phytoremediation; 2010 Aug; 12(6):586-98. PubMed ID: 21166283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vertical distribution and retention mechanism of nitrogen and phosphorus in soils with different macrophytes of a natural river mouth wetland.
    Huang W; Chen Q; Ren K; Chen K
    Environ Monit Assess; 2015 Mar; 187(3):97. PubMed ID: 25663397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nutrient loss with runoff from fairway turf: an evaluation of core cultivation practices and their environmental impact.
    Rice PJ; Horgan BP
    Environ Toxicol Chem; 2011 Nov; 30(11):2473-80. PubMed ID: 21898559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacteria Associated with Echinodorus cordifolius and Lepironia articulata Enhance Nitrogen and Phosphorus Removal from Wastewater.
    Tenzin J; Hirunpunth R; Satjarak A; Peerakietkhajorn S
    Bull Environ Contam Toxicol; 2021 Feb; 106(2):377-384. PubMed ID: 33258052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.