BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

674 related articles for article (PubMed ID: 27372275)

  • 1. Field evaluation of a random forest activity classifier for wrist-worn accelerometer data.
    Pavey TG; Gilson ND; Gomersall SR; Clark B; Trost SG
    J Sci Med Sport; 2017 Jan; 20(1):75-80. PubMed ID: 27372275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer.
    Montoye AHK; Westgate BS; Fonley MR; Pfeiffer KA
    J Appl Physiol (1985); 2018 May; 124(5):1284-1293. PubMed ID: 29369742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hip and Wrist Accelerometer Algorithms for Free-Living Behavior Classification.
    Ellis K; Kerr J; Godbole S; Staudenmayer J; Lanckriet G
    Med Sci Sports Exerc; 2016 May; 48(5):933-40. PubMed ID: 26673126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensor-enabled Activity Class Recognition in Preschoolers: Hip versus Wrist Data.
    Trost SG; Cliff DP; Ahmadi MN; Tuc NV; Hagenbuchner M
    Med Sci Sports Exerc; 2018 Mar; 50(3):634-641. PubMed ID: 29059107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of Activity Classification Algorithms in Free-Living Older Adults.
    Sasaki JE; Hickey AM; Staudenmayer JW; John D; Kent JA; Freedson PS
    Med Sci Sports Exerc; 2016 May; 48(5):941-50. PubMed ID: 26673129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers.
    Ellis K; Kerr J; Godbole S; Lanckriet G; Wing D; Marshall S
    Physiol Meas; 2014 Nov; 35(11):2191-203. PubMed ID: 25340969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The validity of the GENEActiv wrist-worn accelerometer for measuring adult sedentary time in free living.
    Pavey TG; Gomersall SR; Clark BK; Brown WJ
    J Sci Med Sport; 2016 May; 19(5):395-9. PubMed ID: 25956687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of raw acceleration sedentary thresholds in children and adults.
    Hildebrand M; Hansen BH; van Hees VT; Ekelund U
    Scand J Med Sci Sports; 2017 Dec; 27(12):1814-1823. PubMed ID: 27878845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wrist-Worn Accelerometer-Brand Independent Posture Classification.
    Rowlands AV; Yates T; Olds TS; Davies M; Khunti K; Edwardson CL
    Med Sci Sports Exerc; 2016 Apr; 48(4):748-54. PubMed ID: 26559451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free-living Evaluation of Laboratory-based Activity Classifiers in Preschoolers.
    Ahmadi MN; Brookes D; Chowdhury A; Pavey T; Trost SG
    Med Sci Sports Exerc; 2020 May; 52(5):1227-1234. PubMed ID: 31764460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning for activity recognition: hip versus wrist data.
    Trost SG; Zheng Y; Wong WK
    Physiol Meas; 2014 Nov; 35(11):2183-9. PubMed ID: 25340887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical activity classification using the GENEA wrist-worn accelerometer.
    Zhang S; Rowlands AV; Murray P; Hurst TL
    Med Sci Sports Exerc; 2012 Apr; 44(4):742-8. PubMed ID: 21988935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing sedentary behavior with the GENEActiv: introducing the sedentary sphere.
    Rowlands AV; Olds TS; Hillsdon M; Pulsford R; Hurst TL; Eston RG; Gomersall SR; Johnston K; Langford J
    Med Sci Sports Exerc; 2014 Jun; 46(6):1235-47. PubMed ID: 24263980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of automatic wear-time detection algorithms in a free-living setting of wrist-worn and hip-worn ActiGraph GT3X.
    Knaier R; Höchsmann C; Infanger D; Hinrichs T; Schmidt-Trucksäss A
    BMC Public Health; 2019 Feb; 19(1):244. PubMed ID: 30819148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving Hip-Worn Accelerometer Estimates of Sitting Using Machine Learning Methods.
    Kerr J; Carlson J; Godbole S; Cadmus-Bertram L; Bellettiere J; Hartman S
    Med Sci Sports Exerc; 2018 Jul; 50(7):1518-1524. PubMed ID: 29443824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning Models for Classifying Physical Activity in Free-Living Preschool Children.
    Ahmadi MN; Pavey TG; Trost SG
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32764316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wrist-Worn Activity Trackers in Laboratory and Free-Living Settings for Patients With Chronic Pain: Criterion Validity Study.
    Sjöberg V; Westergren J; Monnier A; Lo Martire R; Hagströmer M; Äng BO; Vixner L
    JMIR Mhealth Uhealth; 2021 Jan; 9(1):e24806. PubMed ID: 33433391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerometer wear-site detection: When one site does not suit all, all of the time.
    Rowlands AV; Olds TS; Bakrania K; Stanley RM; Parfitt G; Eston RG; Yates T; Fraysse F
    J Sci Med Sport; 2017 Apr; 20(4):368-372. PubMed ID: 28117147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of the Phillips et al. GENEActiv accelerometer wrist cut-points in children aged 5-8 years old.
    Duncan MJ; Wilson S; Tallis J; Eyre E
    Eur J Pediatr; 2016 Dec; 175(12):2019-2021. PubMed ID: 27785561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validating the Sedentary Sphere method in children: Does wrist or accelerometer brand matter?
    Hurter L; Rowlands AV; Fairclough SJ; Gibbon KC; Knowles ZR; Porcellato LA; Cooper-Ryan AM; Boddy LM
    J Sports Sci; 2019 Aug; 37(16):1910-1918. PubMed ID: 31012798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.