These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 2737261)

  • 41. Tryptophan phosphorescence as a structural probe of mitochondrial F1-ATPase epsilon-subunit.
    Solaini G; Baracca A; Parenti Castelli G; Strambini GB
    Eur J Biochem; 1993 Jun; 214(3):729-34. PubMed ID: 8319682
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The calf gamma crystallins--a Raman spectroscopic study.
    Pande J; McDermott MJ; Callender RH; Spector A
    Exp Eye Res; 1991 Feb; 52(2):193-7. PubMed ID: 2013301
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Opacification of gamma-crystallin solutions from calf lens in relation to cold cataract formation.
    Siezen RJ; Fisch MR; Slingsby C; Benedek GB
    Proc Natl Acad Sci U S A; 1985 Mar; 82(6):1701-5. PubMed ID: 3856852
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Time-resolved circularly polarized protein phosphorescence.
    Schauerte JA; Steel DG; Gafni A
    Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10154-8. PubMed ID: 1438204
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Studies on the location of aromatic amino acids in alpha-crystallin.
    Augusteyn RC; Ghiggino KP; Putilina T
    Biochim Biophys Acta; 1993 Mar; 1162(1-2):61-71. PubMed ID: 8448196
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tryptophan environments in glutathione transferase of human placenta from temperature-dependent phosphorescence studies.
    Arduini A; Strambini G; Di Ilio C; Aceto A; Storto S; Federici G
    Biochim Biophys Acta; 1989 Nov; 999(2):203-7. PubMed ID: 2597709
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phosphorescence properties and protein structure surrounding tryptophan residues in yeast, pig, and rabbit glyceraldehyde-3-phosphate dehydrogenase.
    Strambini GB; Gabellieri E
    Biochemistry; 1989 Jan; 28(1):160-6. PubMed ID: 2650738
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phosphorescence emission of 7-azatryptophan and 5-hydroxytryptophan in fluid solutions and in alpha2 RNA polymerase.
    Cioni P; Erijman L; Strambini GB
    Biochem Biophys Res Commun; 1998 Jul; 248(2):347-51. PubMed ID: 9675138
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural variation in mammalian gamma-crystallins based on computer graphics analyses of human, rat and calf sequences. 1. Core packing and surface properties.
    Summers LJ; Slingsby C; Blundell TL; den Dunnen JT; Moormann RJ; Schoenmakers JG
    Exp Eye Res; 1986 Jul; 43(1):77-92. PubMed ID: 3732418
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Packing interactions in the eye-lens. Structural analysis, internal symmetry and lattice interactions of bovine gamma IVa-crystallin.
    White HE; Driessen HP; Slingsby C; Moss DS; Lindley PF
    J Mol Biol; 1989 May; 207(1):217-35. PubMed ID: 2738925
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Room-temperature phosphorescence from azurin derivatives. Phosphorescence quenching in oxidized native azurin.
    Klemens FK; McMillin DR
    Photochem Photobiol; 1992 May; 55(5):671-6. PubMed ID: 1528979
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spectroscopic studies on human lens crystallins.
    Liang JN; Andley UP; Chylack LT
    Biochim Biophys Acta; 1985 Nov; 832(2):197-203. PubMed ID: 4063377
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Time-resolved room temperature tryptophan phosphorescence in proteins.
    Schauerte JA; Steel DG; Gafni A
    Methods Enzymol; 1997; 278():49-71. PubMed ID: 9170309
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Long-range electron exchange measured in proteins by quenching of tryptophan phosphorescence.
    Vanderkooi JM; Englander SW; Papp S; Wright WW; Owen CS
    Proc Natl Acad Sci U S A; 1990 Jul; 87(13):5099-103. PubMed ID: 2367526
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanism of the efficient tryptophan fluorescence quenching in human gammaD-crystallin studied by time-resolved fluorescence.
    Chen J; Toptygin D; Brand L; King J
    Biochemistry; 2008 Oct; 47(40):10705-21. PubMed ID: 18795792
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phosphorescence lifetime of tryptophan in proteins.
    Gonnelli M; Strambini GB
    Biochemistry; 1995 Oct; 34(42):13847-57. PubMed ID: 7577979
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Time-resolved room temperature protein phosphorescence: nonexponential decay from single emitting tryptophans.
    Schlyer BD; Schauerte JA; Steel DG; Gafni A
    Biophys J; 1994 Sep; 67(3):1192-202. PubMed ID: 7811933
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Phosphorescence analysis of the chlorophyll triplet state in preparations of photosystem II].
    Neverov KV; KrasnovskiÄ­ AA
    Biofizika; 2004; 49(3):493-8. PubMed ID: 15327208
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of NAD+ binding on the luminescence of tryptophans 84 and 310 of glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus.
    Gabellieri E; Rahuel-Clermont S; Branlant G; Strambini GB
    Biochemistry; 1996 Sep; 35(38):12549-59. PubMed ID: 8823192
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phosphorescence maxima and triplet state lifetimes of NAD+ and epsilon-NAD+ in ternary complexes with horse liver alcohol dehydrogenase.
    Rousslang K; Allen L; Ross JB
    Photochem Photobiol; 1989 Feb; 49(2):137-43. PubMed ID: 2710823
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.